Large-scale cross-modal pre-training paradigms have recently shown ubiquitous success on a wide range of downstream tasks, e.g., zero-shot classification, retrieval and image captioning. However, their successes highly rely on the scale and quality of web-crawled data that naturally contain incomplete and noisy information (e.g., wrong or irrelevant content). Existing works either design manual rules to clean data or generate pseudo-targets as auxiliary signals for reducing noise impact, which do not explicitly tackle both the incorrect and incomplete challenges simultaneously. In this paper, to automatically mitigate the impact of noise by solely mining over existing data, we propose a principled Noise-robust Language-Image Pre-training framework (NLIP) to stabilize pre-training via two schemes: noise-harmonization and noise-completion. First, in noise-harmonization scheme, NLIP estimates the noise probability of each pair according to the memorization effect of cross-modal transformers, then adopts noise-adaptive regularization to harmonize the cross-modal alignments with varying degrees. Second, in noise-completion scheme, to enrich the missing object information of text, NLIP injects a concept-conditioned cross-modal decoder to obtain semantic-consistent synthetic captions to complete noisy ones, which uses the retrieved visual concepts (i.e., objects' names) for the corresponding image to guide captioning generation. By collaboratively optimizing noise-harmonization and noise-completion schemes, our NLIP can alleviate the common noise effects during image-text pre-training in a more efficient way. Extensive experiments show the significant performance improvements of our NLIP using only 26M data over existing pre-trained models (e.g., CLIP, FILIP and BLIP) on 12 zero-shot classification datasets, MSCOCO image captioning and zero-shot image-text retrieval tasks.
translated by 谷歌翻译
为了同时朝着对多个下游任务的整体理解,需要提取具有更好可传递性的功能。尽管许多最新的自我监管的预训练方法在普遍的预处理前范式下在各种视觉任务上取得了令人印象深刻的表现,但它们对多任务学习方案的概括能力尚待探索。在本文中,我们在三个下游任务上进行了广泛研究各种类型的自我监督方法的转移性能,例如Moco和Simc​​lr,包括语义细分,可驱动的区域细分和交通对象检测,在大规模驾驶数据集中BDD100K。我们出人意料地发现,他们的表现是最佳的甚至落后于单任务基线的滞后,这可能是由于训练目标和建筑设计的区别在于预处理范式。为了克服这一难题,并避免重新设计资源密集的预培训阶段,我们提出了一种简单而有效的预处理 - 适应性 - 赛范围,用于一般的多任务培训,可以有效地适应现行预审预周态的模型没有增加培训开销。在自适应阶段,我们利用可学习的多尺度适配器来动态调整由多任务目标监督的预验证的模型权重,同时使经过预告片的知识未经触及。此外,我们将视觉语言预训练模型剪辑视为对预处理 - 适应 - 最终范式的强烈补充,并提出了一个名为LV-Adapter的新型适配器,该适配器通过任务特定的提示将语言先验纳入了多任务的模型中和视觉和文本特征之间的对齐。
translated by 谷歌翻译
视觉语言导航(VLN)任务要求代理商通过自然语言指令的指导到达目标。以前的作品学会在指令后逐步导航。然而,这些作品可能无法歧视跨指令轨迹对的相似性和差异,并忽略子指令的时间连续性。这些问题妨碍了代理人学习独特的视觉和语言表示,损害了导航政策的稳健性和普遍性。在本文中,我们提出了一种对比的指令轨迹学习(Citl)框架,探讨了不同数据样本的不变性,而不同的数据样本和方差以学习强大导航的独特表示。具体而言,我们提出:(1)通过分别对比完整轨迹观测和指示的语义来提高视觉和语言表示来提高视觉和语言。 (2)细粒度对比学学习目的,通过利用子指示的时间信息来感知指示; (3)对矿井硬样品对比学学习的成对采样重量机制,从而减轻了数据采样偏差在对比学习中的影响。我们的Citl可以轻松地与VLN骨干网集成,形成新的学习范例,并在看不见的环境中实现更好的普遍性。广泛的实验表明,Citl的模型超越了R2R,R4R和RXR上以前的最先进的方法。
translated by 谷歌翻译
旨在促进现实世界,不断发展和可扩展的自主驾驶系统,我们展示了一个大规模数据集,用于通过从原始数据学习来标准化不同自我监督和半监督方法的评估,这是第一和最大的数据集到期。现有的自主驱动系统严重依赖于“完善”视觉感知模型(即,检测)使用广泛的注释数据培训,以确保安全性。然而,在部署强大的自动驾驶系统时,精致地标记所有情景和环境的实例(即夜,极端天气,城市)是不现实的。最近的自我监督和半监督学习的推进激励,希望通过协作利用大规模未标记的数据和少数标记数据来学习强大的检测模型。现有数据集只提供少量数据或涵盖具有完整注释的有限域,妨碍大规模预训练模型的探索。在这里,我们发布了一个大型2D自主/半监控的对象检测数据集,用于自动驾驶,名为SODA10M,其中包含1000万个未标记的图像和标有6个代表对象类别的20K图像。为了提高多样性,在不同天气条件下的27833个驾驶时间内收集图像,32个不同城市的时期和位置场景。我们提供广泛的实验和对现有的流行自主/半监督方法深度分析,并在自动驾驶范围内给出一些有趣的调查结果。实验表明,SODA10M可以作为不同的自我监督学习方法作为有前途的预训练数据集,这在微调驾驶域中的不同下游任务(即检测,语义/实例分段)进行微调时提供了卓越的性能。更多信息可以参考https://soda-2d.github.io。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Decompilation aims to transform a low-level program language (LPL) (eg., binary file) into its functionally-equivalent high-level program language (HPL) (e.g., C/C++). It is a core technology in software security, especially in vulnerability discovery and malware analysis. In recent years, with the successful application of neural machine translation (NMT) models in natural language processing (NLP), researchers have tried to build neural decompilers by borrowing the idea of NMT. They formulate the decompilation process as a translation problem between LPL and HPL, aiming to reduce the human cost required to develop decompilation tools and improve their generalizability. However, state-of-the-art learning-based decompilers do not cope well with compiler-optimized binaries. Since real-world binaries are mostly compiler-optimized, decompilers that do not consider optimized binaries have limited practical significance. In this paper, we propose a novel learning-based approach named NeurDP, that targets compiler-optimized binaries. NeurDP uses a graph neural network (GNN) model to convert LPL to an intermediate representation (IR), which bridges the gap between source code and optimized binary. We also design an Optimized Translation Unit (OTU) to split functions into smaller code fragments for better translation performance. Evaluation results on datasets containing various types of statements show that NeurDP can decompile optimized binaries with 45.21% higher accuracy than state-of-the-art neural decompilation frameworks.
translated by 谷歌翻译
Image Virtual try-on aims at replacing the cloth on a personal image with a garment image (in-shop clothes), which has attracted increasing attention from the multimedia and computer vision communities. Prior methods successfully preserve the character of clothing images, however, occlusion remains a pernicious effect for realistic virtual try-on. In this work, we first present a comprehensive analysis of the occlusions and categorize them into two aspects: i) Inherent-Occlusion: the ghost of the former cloth still exists in the try-on image; ii) Acquired-Occlusion: the target cloth warps to the unreasonable body part. Based on the in-depth analysis, we find that the occlusions can be simulated by a novel semantically-guided mixup module, which can generate semantic-specific occluded images that work together with the try-on images to facilitate training a de-occlusion try-on (DOC-VTON) framework. Specifically, DOC-VTON first conducts a sharpened semantic parsing on the try-on person. Aided by semantics guidance and pose prior, various complexities of texture are selectively blending with human parts in a copy-and-paste manner. Then, the Generative Module (GM) is utilized to take charge of synthesizing the final try-on image and learning to de-occlusion jointly. In comparison to the state-of-the-art methods, DOC-VTON achieves better perceptual quality by reducing occlusion effects.
translated by 谷歌翻译
In recent years, the Transformer architecture has shown its superiority in the video-based person re-identification task. Inspired by video representation learning, these methods mainly focus on designing modules to extract informative spatial and temporal features. However, they are still limited in extracting local attributes and global identity information, which are critical for the person re-identification task. In this paper, we propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules to address the above issue. Specifically, MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips, respectively, achieving the holistic perception of the input person. We combine the outputs of all the stages for the final identification. In practice, to save the computational cost, the Spatial-Temporal Aggregation (STA) modules are first adopted in each stage to conduct the self-attention operations along the spatial and temporal dimensions separately. We further introduce the Attribute-Aware and Identity-Aware Proxy embedding modules (AAP and IAP) to extract the informative and discriminative feature representations at different stages. All of them are realized by employing newly designed self-attention operations with specific meanings. Moreover, temporal patch shuffling is also introduced to further improve the robustness of the model. Extensive experimental results demonstrate the effectiveness of the proposed modules in extracting the informative and discriminative information from the videos, and illustrate the MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.
translated by 谷歌翻译
It has been observed in practice that applying pruning-at-initialization methods to neural networks and training the sparsified networks can not only retain the testing performance of the original dense models, but also sometimes even slightly boost the generalization performance. Theoretical understanding for such experimental observations are yet to be developed. This work makes the first attempt to study how different pruning fractions affect the model's gradient descent dynamics and generalization. Specifically, this work considers a classification task for overparameterized two-layer neural networks, where the network is randomly pruned according to different rates at the initialization. It is shown that as long as the pruning fraction is below a certain threshold, gradient descent can drive the training loss toward zero and the network exhibits good generalization performance. More surprisingly, the generalization bound gets better as the pruning fraction gets larger. To complement this positive result, this work further shows a negative result: there exists a large pruning fraction such that while gradient descent is still able to drive the training loss toward zero (by memorizing noise), the generalization performance is no better than random guessing. This further suggests that pruning can change the feature learning process, which leads to the performance drop of the pruned neural network. Up to our knowledge, this is the \textbf{first} generalization result for pruned neural networks, suggesting that pruning can improve the neural network's generalization.
translated by 谷歌翻译
This work studies training one-hidden-layer overparameterized ReLU networks via gradient descent in the neural tangent kernel (NTK) regime, where, differently from the previous works, the networks' biases are trainable and are initialized to some constant rather than zero. The first set of results of this work characterize the convergence of the network's gradient descent dynamics. Surprisingly, it is shown that the network after sparsification can achieve as fast convergence as the original network. The contribution over previous work is that not only the bias is allowed to be updated by gradient descent under our setting but also a finer analysis is given such that the required width to ensure the network's closeness to its NTK is improved. Secondly, the networks' generalization bound after training is provided. A width-sparsity dependence is presented which yields sparsity-dependent localized Rademacher complexity and a generalization bound matching previous analysis (up to logarithmic factors). As a by-product, if the bias initialization is chosen to be zero, the width requirement improves the previous bound for the shallow networks' generalization. Lastly, since the generalization bound has dependence on the smallest eigenvalue of the limiting NTK and the bounds from previous works yield vacuous generalization, this work further studies the least eigenvalue of the limiting NTK. Surprisingly, while it is not shown that trainable biases are necessary, trainable bias helps to identify a nice data-dependent region where a much finer analysis of the NTK's smallest eigenvalue can be conducted, which leads to a much sharper lower bound than the previously known worst-case bound and, consequently, a non-vacuous generalization bound.
translated by 谷歌翻译