随着大数据时代的出现,数据质量问题变得越来越重要。在许多因素中,缺少价值的数据是一个主要问题,因此开发有效的插补模型是研究界的关键主题。最近,一个主要的研究方向是采用神经网络模型,例如自组织映射或自动编码器来填充缺失值。但是,这些经典方法几乎无法在数据属性之间同时发现相关特征和共同特征。特别是,对于经典的自动编码器来说,这是一个非常典型的问题,他们经常学习无效的恒定映射,从而极大地伤害了填充性能。为了解决上述问题,我们建议并开发基于功能融合增强自动编码器的缺失值填充模型。我们首先设计并集成到自动编码器中,一个隐藏的层,该层由脱落神经元和径向基函数神经元组成,该神经元可以增强学习相关特征和共同特征的能力。此外,我们基于动态聚类(MVDC)制定了缺失的值填充策略,该策略已纳入迭代优化过程。该设计可以增强多维功能融合能力,从而提高动态协作缺失填充性能。通过实验比较与许多缺失值填充方法的实验比较来验证我们的模型的有效性,这些方法在七个数据集上进行了测试,而缺失率不同。
translated by 谷歌翻译
转移学习通过利用特定源任务的数据来提高目标任务的性能:源和目标任务之间的关系越接近,通过转移学习的绩效提高越大。在神经科学中,认知任务之间的关系通常由激活的大脑区域或神经表示的相似性表示。但是,没有研究将转移学习和神经科学联系起来,以揭示认知任务之间的关系。在这项研究中,我们提出了一个转移学习框架,以反映认知任务之间的关系,并比较通过转移学习和大脑区域(例如Neurosynth)反映的任务关系。我们的转移学习结果创建了认知任务,以反映认知任务之间的关系,这与来自神经合成的任务关系非常一致。如果源和目标认知任务激活相似的大脑区域,则转移学习在任务解码方面的性能更好。我们的研究发现了多个认知任务的关系,并为基于小样本数据的神经解码转移学习中的源任务选择提供了指导。
translated by 谷歌翻译
本报告介绍了在CVPR 2022上提交通用事件边界检测(GEBD)挑战中使用的算法。在这项工作中,我们改善了GEBD的现有结构化上下文变压器(SC-Transformer)方法。具体而言,在变压器编码器后,添加了变压器解码器模块以提取高质量的框架功能。最终分类是根据原始二进制分类器和新引入的多类分类器分支共同执行的。为了丰富运动信息,将光流作为新模式引入。最后,模型合奏用于进一步提高性能。所提出的方法在动力学-GEBD测试集上获得了86.49%的F1得分。与先前的SOTA方法相比,它提高了2.86%的F1分数。
translated by 谷歌翻译
传统的工业推荐人通常在单一的业务领域培训,然后为此域名服务。但是,在大型商业平台中,通常情况下,推荐人需要为多个业务域提供点击率(CTR)预测。不同的域具有重叠的用户组和项目。因此,存在共性。由于特定用户组具有差异,并且用户行为可能在各种商业域中改变,因此还存在区别。区别导致特定于域的数据分布,使单个共享模型很难在所有域上运行良好。要学习一个有效且高效的CTR模型,可以同时处理多个域,我们呈现明星拓扑自适应推荐(Star)。具体而言,STAR具有星形拓扑,由共享中心参数和特定于域的参数组成。共享参数用于学习所有域的共性,以及域特定参数捕获域区分以进行更精细的预测。给定来自不同商业域的请求,Star可以根据域特征调节其参数。生产数据的实验结果验证了所提出的明星模型的优越性。自2020年以来,STAR已部署在阿里巴巴的显示广告系统中,从RPM获得平均8.0%的改进和6.0%(每米尔勒收入)。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译