Hyperspectral Imaging (HSI) provides detailed spectral information and has been utilised in many real-world applications. This work introduces an HSI dataset of building facades in a light industry environment with the aim of classifying different building materials in a scene. The dataset is called the Light Industrial Building HSI (LIB-HSI) dataset. This dataset consists of nine categories and 44 classes. In this study, we investigated deep learning based semantic segmentation algorithms on RGB and hyperspectral images to classify various building materials, such as timber, brick and concrete.
translated by 谷歌翻译
Point cloud analysis is receiving increasing attention, however, most existing point cloud models lack the practical ability to deal with the unavoidable presence of unknown objects. This paper mainly discusses point cloud analysis under open-set settings, where we train the model without data from unknown classes and identify them in the inference stage. Basically, we propose to solve open-set point cloud analysis using a novel Point Cut-and-Mix mechanism consisting of Unknown-Point Simulator and Unknown-Point Estimator modules. Specifically, we use the Unknown-Point Simulator to simulate unknown data in the training stage by manipulating the geometric context of partial known data. Based on this, the Unknown-Point Estimator module learns to exploit the point cloud's feature context for discriminating the known and unknown data. Extensive experiments show the plausibility of open-set point cloud analysis and the effectiveness of our proposed solutions. Our code is available at \url{https://github.com/ShiQiu0419/pointcam}.
translated by 谷歌翻译
学习一种潜在的嵌入以了解数据分布的潜在性质,通常是在曲率为零的欧几里得空间中提出的。但是,在嵌入空间中构成的几何约束的成功表明,弯曲空间可能会编码更多的结构信息,从而导致更好的判别能力,从而获得更丰富的表示。在这项工作中,我们研究了弯曲空间的好处,用于分析数据中的异常或分布对象。这是通过通过三个几何约束来考虑嵌入的,即球形几何(具有正曲率),双曲几何形状(具有负曲率)或混合几何形状(具有正曲率和负曲率)。鉴于手头的任务,可以在统一的设计中互换选择三个几何约束。为弯曲空间中的嵌入量身定制,我们还制定功能以计算异常得分。提出了两种类型的几何模块(即,几何模块和两个几何模型)提出了插入原始的欧几里得分类器,并从弯曲的嵌入式中计算出异常分数。我们在各种视觉识别场景中评估所得设计,包括图像检测(多类OOD检测和一级异常检测)和分割(多类异常分段和一级异常分段)。经验结果表明,通过对各种情况的一致改进,我们的提案的有效性。
translated by 谷歌翻译
利用通用神经结构来替代手动设计或感应偏见,最近引起了广泛的兴趣。但是,现有的跟踪方法依赖于定制的子模块,需要进行架构选择的先验知识,从而阻碍了更通用系统中的跟踪开发。本文通过利用变压器主链进行关节特征提取和交互来提供简化的跟踪体系结构(SIMTRACK)。与现有的暹罗跟踪器不同,我们将输入图像序列化,并在单支骨架上直接串联。主链中的特征相互作用有助于删除精心设计的交互模块并产生更有效的框架。为了减少视觉变压器中的减速采样的信息丢失,我们进一步提出了动脉窗口策略,以可接受的计算成本提供更多多样化的输入补丁。我们的SimTrack在Lasot/TNL2K上以2.5%/2.6%的AUC增益提高了基线,并获得了与其他没有铃铛和哨声的其他专业跟踪算法竞争的结果。
translated by 谷歌翻译
我们向您展示一次(YOCO)进行数据增强。 Yoco将一张图像切成两片,并在每件零件中单独执行数据增强。应用YOCO改善了每个样品的增强的多样性,并鼓励神经网络从部分信息中识别对象。 Yoco享受无参数,轻松使用的属性,并免费提供几乎所有的增强功能。进行了彻底的实验以评估其有效性。我们首先证明Yoco可以无缝地应用于不同的数据增强,神经网络体系结构,并在CIFAR和Imagenet分类任务上带来性能提高,有时会超过传统的图像级增强。此外,我们显示了Yoco益处对比的预培训,以更强大的表示,可以更好地转移到多个下游任务。最后,我们研究了Yoco的许多变体,并经验分析了各个设置的性能。代码可在GitHub上找到。
translated by 谷歌翻译
利用TRIMAP引导和融合多级功能是具有像素级预测的基于Trimap的垫子的两个重要问题。为了利用Trimap指导,大多数现有方法只需将TRIMAPS和图像连接在一起,以馈送深网络或应用额外的网络以提取更多的TRIMAP指导,这符合效率和效率之间的冲突。对于新兴的基于内容的特征融合,大多数现有的消光方法仅关注本地特征,这些功能缺乏与有趣对象相关的强大语义信息的全局功能的指导。在本文中,我们提出了一种由我们的Trimap引导的非背景多尺度池(TMP)模块和全球本地背景信息融合(GLF)模块组成的Trimap-Goided Feats挖掘和融合网络。考虑到Trimap提供强大的语义指导,我们的TMP模块在Trimap的指导下对有趣的对象进行了有效的特征挖掘,而无需额外参数。此外,我们的GLF模块使用我们的TMP模块开采的有趣物体的全局语义信息,以指导有效的全局本地上下文感知多级功能融合。此外,我们建立了一个共同的有趣的物体消光(CIOM)数据集,以推进高质量的图像消光。在组合物-1K测试集,Alphamatting基准和我们的CIOM测试集上的实验结果表明,我们的方法优于最先进的方法。代码和模型将很快公开发布。
translated by 谷歌翻译
我们提出并研究了一个名为“盲图分解”(BID)的新任务,该任务要求将叠加的图像分离为盲点环境中的构成基础图像,也就是说,涉及混合和混合机制的源成分都是未知的。例如,雨水可能由多个组成部分组成,例如雨条,雨滴,雪和阴霾。雨图像可以视为这些组件的任意组合,其中一些或全部。如何将叠加的图像(如多雨图像)分解为不同的源组件是迈向现实世界视觉系统的关键步骤。为了促进对这项新任务的研究,我们构建了多个基准数据集,包括跨多个领域的混合图像分解,实际筛查,以及关节阴影/反射/水印。此外,我们提出了一个简单而通用的盲图分解网络(Biden),以作为未来工作的强大基准。实验结果证明了我们的基准和拜登的有效性。
translated by 谷歌翻译
高效的时空建模是视频动作识别的重要而挑战性问题。现有的最先进的方法利用相邻的特征差异,以获得短期时间建模的运动线索,简单的卷积。然而,只有一个本地卷积,由于接收领域有限而无法处理各种动作。此外,摄像机运动带来的动作耳鸣还将损害提取的运动功能的质量。在本文中,我们提出了一个时间显着积分(TSI)块,其主要包含突出运动激励(SME)模块和交叉感知时间集成(CTI)模块。具体地,中小企业旨在通过空间级局部 - 全局运动建模突出显示运动敏感区域,其中显着对准和金字塔型运动建模在相邻帧之间连续进行,以捕获由未对准背景引起的噪声较少的运动动态。 CTI旨在分别通过一组单独的1D卷积进行多感知时间建模。同时,不同看法的时间相互作用与注意机制相结合。通过这两个模块,通过引入有限的附加参数,可以有效地编码长短的短期时间关系。在几个流行的基准测试中进行了广泛的实验(即,某种东西 - 某种东西 - 东西 - 400,uCF-101和HMDB-51),这证明了我们所提出的方法的有效性。
translated by 谷歌翻译
探讨了语言建模流行的变形金刚,用于近期解决视觉任务,例如,用于图像分类的视觉变压器(VIT)。 VIT模型将每个图像分成具有固定长度的令牌序列,然后应用多个变压器层以模拟它们的全局关系以进行分类。然而,当从像想象中的中型数据集上从头开始训练时,VIT对CNNS达到较差的性能。我们发现它是因为:1)输入图像的简单标记未能模拟相邻像素之间的重要局部结构,例如边缘和线路,导致训练采样效率低。 2)冗余注意骨干骨干设计对固定计算预算和有限的训练样本有限的具有限制性。为了克服这些限制,我们提出了一种新的令牌到令牌视觉变压器(T2T-VIT),它包含1)层 - 明智的代币(T2T)转换,通过递归聚合相邻来逐步地结构于令牌到令牌。代币进入一个令牌(令牌到令牌),这样可以建模由周围令牌所代表的本地结构,并且可以减少令牌长度; 2)一种高效的骨干,具有深度狭窄的结构,用于在实证研究后CNN建筑设计的激励变压器结构。值得注意的是,T2T-VIT将Vanilla Vit的参数计数和Mac减少了一半,同时从想象中从头开始训练时,改善了超过3.0 \%。它还优于Endnets并通过直接培训Imagenet训练来实现与MobileNets相当的性能。例如,T2T-VTO与Reset50(21.5M参数)的可比大小(21.5M参数)可以在图像分辨率384 $ \ Times 384上实现83.3 \%TOP1精度。 (代码:https://github.com/yitu-opensource/t2t-vit)
translated by 谷歌翻译
Recent CLIP-guided 3D optimization methods, e.g., DreamFields and PureCLIPNeRF achieve great success in zero-shot text-guided 3D synthesis. However, due to the scratch training and random initialization without any prior knowledge, these methods usually fail to generate accurate and faithful 3D structures that conform to the corresponding text. In this paper, we make the first attempt to introduce the explicit 3D shape prior to CLIP-guided 3D optimization methods. Specifically, we first generate a high-quality 3D shape from input texts in the text-to-shape stage as the 3D shape prior. We then utilize it as the initialization of a neural radiance field and then optimize it with the full prompt. For the text-to-shape generation, we present a simple yet effective approach that directly bridges the text and image modalities with a powerful text-to-image diffusion model. To narrow the style domain gap between images synthesized by the text-to-image model and shape renderings used to train the image-to-shape generator, we further propose to jointly optimize a learnable text prompt and fine-tune the text-to-image diffusion model for rendering-style image generation. Our method, namely, Dream3D, is capable of generating imaginative 3D content with better visual quality and shape accuracy than state-of-the-art methods.
translated by 谷歌翻译