能够创建一个可以与人类就他们所观看的东西进行有意义的对话的系统,这将是一项技术壮举。针对该目标的设置作为视频对话任务表示,要求系统在正在进行的对话框中对问题产生自然话语。该任务带来了伟大的视觉,语言和推理挑战,如果没有适当的表示方案,可以轻松克服支持高级推理的视频和对话。为了应对这些挑战,我们提出了一个新的以对象为中心的视频对话框架,该框架支持神经推理称为成本 - 代表时空中有关对象的对话。在这里,视频中的动态时空视觉内容首先解析为对象轨迹。鉴于此视频抽象,成本维护并跟踪与对象相关的对话框状态,这些对话框在收到新问题后会更新。对象相互作用是动态和条件地推断出每个问题的,并且它们是它们之间关系推理的基础。成本还保留了以前答案的历史记录,这允许检索相关的以对象为中心的信息以丰富答案形成过程。然后,语言生产以逐步进行,进入当前话语,现有对话和当前问题的背景。我们评估了DSTC7和DSTC8基准的成本,证明了其对最先进的竞争力。
translated by 谷歌翻译
We introduce efficient deep learning-based methods for legal document processing including Legal Document Retrieval and Legal Question Answering tasks in the Automated Legal Question Answering Competition (ALQAC 2022). In this competition, we achieve 1\textsuperscript{st} place in the first task and 3\textsuperscript{rd} place in the second task. Our method is based on the XLM-RoBERTa model that is pre-trained from a large amount of unlabeled corpus before fine-tuning to the specific tasks. The experimental results showed that our method works well in legal retrieval information tasks with limited labeled data. Besides, this method can be applied to other information retrieval tasks in low-resource languages.
translated by 谷歌翻译
我们为神经机翻译(NMT)提供了一个开源工具包。新工具包主要基于拱形变压器(Vaswani等,2017)以及下面详述的许多其他改进,以便创建一个独立的,易于使用,一致和全面的各个领域的机器翻译任务框架。它是为了支持双语和多语言翻译任务的工具,从构建各个语料库的模型开始推断新的预测或将模型打包给提供功能的JIT格式。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
Recent studies have shown that using an external Language Model (LM) benefits the end-to-end Automatic Speech Recognition (ASR). However, predicting tokens that appear less frequently in the training set is still quite challenging. The long-tail prediction problems have been widely studied in many applications, but only been addressed by a few studies for ASR and LMs. In this paper, we propose a new memory augmented lookup dictionary based Transformer architecture for LM. The newly introduced lookup dictionary incorporates rich contextual information in training set, which is vital to correctly predict long-tail tokens. With intensive experiments on Chinese and English data sets, our proposed method is proved to outperform the baseline Transformer LM by a great margin on both word/character error rate and tail tokens error rate. This is achieved without impact on the decoding efficiency. Overall, we demonstrate the effectiveness of our proposed method in boosting the ASR decoding performance, especially for long-tail tokens.
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
Summary quality assessment metrics have two categories: reference-based and reference-free. Reference-based metrics are theoretically more accurate but are limited by the availability and quality of the human-written references, which are both difficulty to ensure. This inspires the development of reference-free metrics, which are independent from human-written references, in the past few years. However, existing reference-free metrics cannot be both zero-shot and accurate. In this paper, we propose a zero-shot but accurate reference-free approach in a sneaky way: feeding documents, based upon which summaries generated, as references into reference-based metrics. Experimental results show that this zero-shot approach can give us the best-performing reference-free metrics on nearly all aspects on several recently-released datasets, even beating reference-free metrics specifically trained for this task sometimes. We further investigate what reference-based metrics can benefit from such repurposing and whether our additional tweaks help.
translated by 谷歌翻译
Ultra-fine entity typing (UFET) predicts extremely free-formed types (e.g., president, politician) of a given entity mention (e.g., Joe Biden) in context. State-of-the-art (SOTA) methods use the cross-encoder (CE) based architecture. CE concatenates the mention (and its context) with each type and feeds the pairs into a pretrained language model (PLM) to score their relevance. It brings deeper interaction between mention and types to reach better performance but has to perform N (type set size) forward passes to infer types of a single mention. CE is therefore very slow in inference when the type set is large (e.g., N = 10k for UFET). To this end, we propose to perform entity typing in a recall-expand-filter manner. The recall and expand stages prune the large type set and generate K (K is typically less than 256) most relevant type candidates for each mention. At the filter stage, we use a novel model called MCCE to concurrently encode and score these K candidates in only one forward pass to obtain the final type prediction. We investigate different variants of MCCE and extensive experiments show that MCCE under our paradigm reaches SOTA performance on ultra-fine entity typing and is thousands of times faster than the cross-encoder. We also found MCCE is very effective in fine-grained (130 types) and coarse-grained (9 types) entity typing. Our code is available at \url{https://github.com/modelscope/AdaSeq/tree/master/examples/MCCE}.
translated by 谷歌翻译
Prior works on Information Extraction (IE) typically predict different tasks and instances (e.g., event triggers, entities, roles, relations) independently, while neglecting their interactions and leading to model inefficiency. In this work, we introduce a joint IE framework, HighIE, that learns and predicts multiple IE tasks by integrating high-order cross-task and cross-instance dependencies. Specifically, we design two categories of high-order factors: homogeneous factors and heterogeneous factors. Then, these factors are utilized to jointly predict labels of all instances. To address the intractability problem of exact high-order inference, we incorporate a high-order neural decoder that is unfolded from a mean-field variational inference method. The experimental results show that our approach achieves consistent improvements on three IE tasks compared with our baseline and prior work.
translated by 谷歌翻译
Dense retrievers have made significant strides in obtaining state-of-the-art results on text retrieval and open-domain question answering (ODQA). Yet most of these achievements were made possible with the help of large annotated datasets, unsupervised learning for dense retrieval models remains an open problem. In this work, we explore two categories of methods for creating pseudo query-document pairs, named query extraction (QExt) and transferred query generation (TQGen), to augment the retriever training in an annotation-free and scalable manner. Specifically, QExt extracts pseudo queries by document structures or selecting salient random spans, and TQGen utilizes generation models trained for other NLP tasks (e.g., summarization) to produce pseudo queries. Extensive experiments show that dense retrievers trained with individual augmentation methods can perform comparably well with multiple strong baselines, and combining them leads to further improvements, achieving state-of-the-art performance of unsupervised dense retrieval on both BEIR and ODQA datasets.
translated by 谷歌翻译