准确注释的图像数据集是研究动物行为的重要组成部分。与我们知道并且可能存在的物种数量相比,现有的标记姿势数据集仅覆盖其中的一小部分,而构建全面的大规模数据集则非常昂贵。在这里,我们提出了一种非常数据有效的策略,该策略针对四足动物的姿势估计,该策略仅需要少量来自目标动物的真实图像。可以证实,在诸如ImageNet之类的通用图像数据集上具有预计权重的骨干网络可以减轻对目标动物姿势数据的高需求,并通过了解对物体细分和关键点估计的先验知识来缩短训练时间。但是,当面对严重的数据稀缺性(即$ <10^2 $真实图像)时,模型性能保持不令人满意,尤其是对于具有相当灵活性和几个可比零件的四肢而言。因此,我们引入了一种称为Pasyn的先前感知的合成动物数据生成管道,以增强动物姿势数据对可靠的姿势估计所必需的数据。 Pasyn通过在几种动画3D动物模型上训练变异生成模型,生成概率 - valid合成姿势数据集,突触。此外,样式转移策略被用来将合成动物形象融合到真实背景中。我们通过三个流行的骨干网络评估了方法的改进,并测试了其姿势估计的准确性,并在动物园中从真实动物中收集的公共动物姿势图像以及从真实的动物中收集的姿势估计准确性。
translated by 谷歌翻译
婴儿运动分析是在儿童早期开发研究中具有重要意义的主题。然而,虽然人类姿势估计的应用变得越来越宽,但是在大规模成年姿势数据集上培训的模型几乎不能在估计婴幼儿姿势,因为它们的身体比率显着差异以及它们的构成的多功能性。此外,隐私和安全考虑因素阻碍了从头划痕培训强大模型所需的适当婴儿姿势数据的可用性。为了解决这个问题,本文提出(1)建立和公开发布具有小但不同实际婴儿图像的混合综合和真正的婴儿姿势(Syrip)数据集以及生成的合成婴儿姿势和(2)多级不变表示学习策略可以将知识从成人姿势和合成婴儿图像的相邻域和综合性婴儿图像转移到我们的微调域适应婴儿姿势(FIDEP)估计模型中。在我们的消融研究中,具有相同的网络结构,在SyRip数据集上培训的模型对唯一的其他公共婴儿姿势数据集接受过的培训明显改进。与具有不同复杂性的姿势估计骨干网络集成,FIDEP比这些模型的微调版本始终如一。我们最先进的暗影模型上最好的婴儿姿势估计表演者显示了93.6的平均平均精度(MAP)。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
In this paper, we study the problem of knowledge-intensive text-to-SQL, in which domain knowledge is necessary to parse expert questions into SQL queries over domain-specific tables. We formalize this scenario by building a new Chinese benchmark KnowSQL consisting of domain-specific questions covering various domains. We then address this problem by presenting formulaic knowledge, rather than by annotating additional data examples. More concretely, we construct a formulaic knowledge bank as a domain knowledge base and propose a framework (ReGrouP) to leverage this formulaic knowledge during parsing. Experiments using ReGrouP demonstrate a significant 28.2% improvement overall on KnowSQL.
translated by 谷歌翻译
Various datasets have been proposed for simultaneous localization and mapping (SLAM) and related problems. Existing datasets often include small environments, have incomplete ground truth, or lack important sensor data, such as depth and infrared images. We propose an easy-to-use framework for acquiring building-scale 3D reconstruction using a consumer depth camera. Unlike complex and expensive acquisition setups, our system enables crowd-sourcing, which can greatly benefit data-hungry algorithms. Compared to similar systems, we utilize raw depth maps for odometry computation and loop closure refinement which results in better reconstructions. We acquire a building-scale 3D dataset (BS3D) and demonstrate its value by training an improved monocular depth estimation model. As a unique experiment, we benchmark visual-inertial odometry methods using both color and active infrared images.
translated by 谷歌翻译