There has been a concurrent significant improvement in the medical images used to facilitate diagnosis and the performance of machine learning techniques to perform tasks such as classification, detection, and segmentation in recent years. As a result, a rapid increase in the usage of such systems can be observed in the healthcare industry, for instance in the form of medical image classification systems, where these models have achieved diagnostic parity with human physicians. One such application where this can be observed is in computer vision tasks such as the classification of skin lesions in dermatoscopic images. However, as stakeholders in the healthcare industry, such as insurance companies, continue to invest extensively in machine learning infrastructure, it becomes increasingly important to understand the vulnerabilities in such systems. Due to the highly critical nature of the tasks being carried out by these machine learning models, it is necessary to analyze techniques that could be used to take advantage of these vulnerabilities and methods to defend against them. This paper explores common adversarial attack techniques. The Fast Sign Gradient Method and Projected Descent Gradient are used against a Convolutional Neural Network trained to classify dermatoscopic images of skin lesions. Following that, it also discusses one of the most popular adversarial defense techniques, adversarial training. The performance of the model that has been trained on adversarial examples is then tested against the previously mentioned attacks, and recommendations to improve neural networks robustness are thus provided based on the results of the experiment.
translated by 谷歌翻译
Biomedical knowledge graphs (KG) are heterogenous networks consisting of biological entities as nodes and relations between them as edges. These entities and relations are extracted from millions of research papers and unified in a single resource. The goal of biomedical multi-hop question-answering over knowledge graph (KGQA) is to help biologist and scientist to get valuable insights by asking questions in natural language. Relevant answers can be found by first understanding the question and then querying the KG for right set of nodes and relationships to arrive at an answer. To model the question, language models such as RoBERTa and BioBERT are used to understand context from natural language question. One of the challenges in KGQA is missing links in the KG. Knowledge graph embeddings (KGE) help to overcome this problem by encoding nodes and edges in a dense and more efficient way. In this paper, we use a publicly available KG called Hetionet which is an integrative network of biomedical knowledge assembled from 29 different databases of genes, compounds, diseases, and more. We have enriched this KG dataset by creating a multi-hop biomedical question-answering dataset in natural language for testing the biomedical multi-hop question-answering system and this dataset will be made available to the research community. The major contribution of this research is an integrated system that combines language models with KG embeddings to give highly relevant answers to free-form questions asked by biologists in an intuitive interface. Biomedical multi-hop question-answering system is tested on this data and results are highly encouraging.
translated by 谷歌翻译