在本文中,我们介绍了战术边缘(水合物)的高维可重构分析,使用低S型嵌入式硬件可以在利用非MAC的边缘进行实时重新配置(不含浮点多裂动作)(无浮点多裂动作)(深神经网络)( DNN)结合了高度(HD)计算加速器。我们描述了算法,经过训练的量化模型生成以及功能提取器的模拟性能,不含多重蓄能的供您喂养基于高维逻辑的分类器。然后,我们展示了性能如何随着超数的数量而增加。我们将与传统DNN相比,描述已实现的低压FPGA硬件和嵌入式软件系统,并详细介绍实现的硬件加速器。我们讨论了测量的系统延迟和功率,由于使用可学习的量化和高清计算而引起的噪声稳健性,用于视频活动分类任务的实际和模拟系统性能以及在同一数据集上进行重新配置的演示。我们表明,仅使用梯度下降反向传播(无梯度)的馈电HD分类器(无梯度),可以通过使用几乎没有射击的新课程来实现现场的可重构性。最初的工作使用了LRCN DNN,目前已扩展到使用具有改进性能的两流DNN。
translated by 谷歌翻译
我们研究了如何使用来自生物视觉的扫视机制来使深层神经网络更有效地用于分类和对象检测问题。我们提出的方法是基于注意力驱动的视觉处理和扫视的思想,由注意力影响的微型眼动。我们通过分析进行实验:i)不同的深神经网络(DNN)特征提取器的鲁棒性对部分感知图像进行图像分类和对象检测,以及ii)acccades在掩盖图像贴片中用于图像分类和对象跟踪的效用。在几个数据集(CIFAR-10,DAVSOD,MSCOCO和MOT17)上进行了卷积网(RESNET-18)和基于变压器模型(VIT,DETR,TRANSTRACK)的实验。我们的实验显示了通过学习与最先进的DNN一起用于分类,检测和跟踪任务时模仿人类扫视的智能数据减少。我们观察到分类和检测任务的性能下降最少,而仅使用约30 \%的原始传感器数据。我们讨论扫视机制如何通过``像素''处理来为硬件设计提供信息。
translated by 谷歌翻译
Radiance Fields (RF) are popular to represent casually-captured scenes for new view generation and have been used for applications beyond it. Understanding and manipulating scenes represented as RFs have to naturally follow to facilitate mixed reality on personal spaces. Semantic segmentation of objects in the 3D scene is an important step for that. Prior segmentation efforts using feature distillation show promise but don't scale to complex objects with diverse appearance. We present a framework to interactively segment objects with fine structure. Nearest neighbor feature matching identifies high-confidence regions of the objects using distilled features. Bilateral filtering in a joint spatio-semantic space grows the region to recover accurate segmentation. We show state-of-the-art results of segmenting objects from RFs and compositing them to another scene, changing appearance, etc., moving closer to rich scene manipulation and understanding. Project Page: https://rahul-goel.github.io/isrf/
translated by 谷歌翻译
Stylized view generation of scenes captured casually using a camera has received much attention recently. The geometry and appearance of the scene are typically captured as neural point sets or neural radiance fields in the previous work. An image stylization method is used to stylize the captured appearance by training its network jointly or iteratively with the structure capture network. The state-of-the-art SNeRF method trains the NeRF and stylization network in an alternating manner. These methods have high training time and require joint optimization. In this work, we present StyleTRF, a compact, quick-to-optimize strategy for stylized view generation using TensoRF. The appearance part is fine-tuned using sparse stylized priors of a few views rendered using the TensoRF representation for a few iterations. Our method thus effectively decouples style-adaption from view capture and is much faster than the previous methods. We show state-of-the-art results on several scenes used for this purpose.
translated by 谷歌翻译
Language models are widely deployed to provide automatic text completion services in user products. However, recent research has revealed that language models (especially large ones) bear considerable risk of memorizing private training data, which is then vulnerable to leakage and extraction by adversaries. In this study, we test the efficacy of a range of privacy-preserving techniques to mitigate unintended memorization of sensitive user text, while varying other factors such as model size and adversarial conditions. We test both "heuristic" mitigations (those without formal privacy guarantees) and Differentially Private training, which provides provable levels of privacy at the cost of some model performance. Our experiments show that (with the exception of L2 regularization), heuristic mitigations are largely ineffective in preventing memorization in our test suite, possibly because they make too strong of assumptions about the characteristics that define "sensitive" or "private" text. In contrast, Differential Privacy reliably prevents memorization in our experiments, despite its computational and model-performance costs.
translated by 谷歌翻译
Deep learning surrogate models are being increasingly used in accelerating scientific simulations as a replacement for costly conventional numerical techniques. However, their use remains a significant challenge when dealing with real-world complex examples. In this work, we demonstrate three types of neural network architectures for efficient learning of highly non-linear deformations of solid bodies. The first two architectures are based on the recently proposed CNN U-NET and MAgNET (graph U-NET) frameworks which have shown promising performance for learning on mesh-based data. The third architecture is Perceiver IO, a very recent architecture that belongs to the family of attention-based neural networks--a class that has revolutionised diverse engineering fields and is still unexplored in computational mechanics. We study and compare the performance of all three networks on two benchmark examples, and show their capabilities to accurately predict the non-linear mechanical responses of soft bodies.
translated by 谷歌翻译
A number of competing hypotheses have been proposed to explain why small-batch Stochastic Gradient Descent (SGD)leads to improved generalization over the full-batch regime, with recent work crediting the implicit regularization of various quantities throughout training. However, to date, empirical evidence assessing the explanatory power of these hypotheses is lacking. In this paper, we conduct an extensive empirical evaluation, focusing on the ability of various theorized mechanisms to close the small-to-large batch generalization gap. Additionally, we characterize how the quantities that SGD has been claimed to (implicitly) regularize change over the course of training. By using micro-batches, i.e. disjoint smaller subsets of each mini-batch, we empirically show that explicitly penalizing the gradient norm or the Fisher Information Matrix trace, averaged over micro-batches, in the large-batch regime recovers small-batch SGD generalization, whereas Jacobian-based regularizations fail to do so. This generalization performance is shown to often be correlated with how well the regularized model's gradient norms resemble those of small-batch SGD. We additionally show that this behavior breaks down as the micro-batch size approaches the batch size. Finally, we note that in this line of inquiry, positive experimental findings on CIFAR10 are often reversed on other datasets like CIFAR100, highlighting the need to test hypotheses on a wider collection of datasets.
translated by 谷歌翻译
Identification of named entities from legal texts is an essential building block for developing other legal Artificial Intelligence applications. Named Entities in legal texts are slightly different and more fine-grained than commonly used named entities like Person, Organization, Location etc. In this paper, we introduce a new corpus of 46545 annotated legal named entities mapped to 14 legal entity types. The Baseline model for extracting legal named entities from judgment text is also developed.
translated by 谷歌翻译
Neural network-based approaches for solving partial differential equations (PDEs) have recently received special attention. However, the large majority of neural PDE solvers only apply to rectilinear domains, and do not systematically address the imposition of Dirichlet/Neumann boundary conditions over irregular domain boundaries. In this paper, we present a framework to neurally solve partial differential equations over domains with irregularly shaped (non-rectilinear) geometric boundaries. Our network takes in the shape of the domain as an input (represented using an unstructured point cloud, or any other parametric representation such as Non-Uniform Rational B-Splines) and is able to generalize to novel (unseen) irregular domains; the key technical ingredient to realizing this model is a novel approach for identifying the interior and exterior of the computational grid in a differentiable manner. We also perform a careful error analysis which reveals theoretical insights into several sources of error incurred in the model-building process. Finally, we showcase a wide variety of applications, along with favorable comparisons with ground truth solutions.
translated by 谷歌翻译
Deep Ensemble Convolutional Neural Networks has become a methodology of choice for analyzing medical images with a diagnostic performance comparable to a physician, including the diagnosis of Diabetic Retinopathy. However, commonly used techniques are deterministic and are therefore unable to provide any estimate of predictive uncertainty. Quantifying model uncertainty is crucial for reducing the risk of misdiagnosis. A reliable architecture should be well-calibrated to avoid over-confident predictions. To address this, we propose a UATTA-ENS: Uncertainty-Aware Test-Time Augmented Ensemble Technique for 5 Class PIRC Diabetic Retinopathy Classification to produce reliable and well-calibrated predictions.
translated by 谷歌翻译