该文档概述了Prospero预先注册的方案,用于对口腔或口腔或肉桂癌治疗后语音变化的系统审查进行系统审查。口腔中肿瘤的治疗可能会导致生理变化,这可能导致发音困难。由于疤痕组织和/或潜在的(术后)放射治疗,舌头变得不那么流动。此外,组织损失可能会为气流或极限收缩可能性创造旁路。为了更好地了解语音问题的性质,需要有关枢纽运动的信息,因为感知信息或声学信息仅提供了间接的关节变化证据。因此,这项系统的综述将回顾研究,该研究直接测量口腔或口咽癌治疗后舌,下巴和嘴唇的关节运动。
translated by 谷歌翻译
尽管近期因因果推断领域的进展,迄今为止没有关于从观察数据的收集治疗效应估算的方法。对临床实践的结果是,当缺乏随机试验的结果时,没有指导在真实情景中似乎有效的指导。本文提出了一种务实的方法,以获得从观察性研究的治疗效果的初步但稳健地估算,为前线临床医生提供对其治疗策略的信心程度。我们的研究设计适用于一个公开问题,估算Covid-19密集护理患者的拳击机动的治疗效果。
translated by 谷歌翻译
放射线学使用定量医学成像特征来预测临床结果。目前,在新的临床应用中,必须通过启发式试验和纠正过程手动完成各种可用选项的最佳放射组方法。在这项研究中,我们提出了一个框架,以自动优化每个应用程序的放射线工作流程的构建。为此,我们将放射线学作为模块化工作流程,并为每个组件包含大量的常见算法。为了优化每个应用程序的工作流程,我们使用随机搜索和结合使用自动化机器学习。我们在十二个不同的临床应用中评估我们的方法,从而在曲线下导致以下区域:1)脂肪肉瘤(0.83); 2)脱粘型纤维瘤病(0.82); 3)原发性肝肿瘤(0.80); 4)胃肠道肿瘤(0.77); 5)结直肠肝转移(0.61); 6)黑色素瘤转移(0.45); 7)肝细胞癌(0.75); 8)肠系膜纤维化(0.80); 9)前列腺癌(0.72); 10)神经胶质瘤(0.71); 11)阿尔茨海默氏病(0.87);和12)头颈癌(0.84)。我们表明,我们的框架具有比较人类专家的竞争性能,优于放射线基线,并且表现相似或优于贝叶斯优化和更高级的合奏方法。最后,我们的方法完全自动优化了放射线工作流的构建,从而简化了在新应用程序中对放射线生物标志物的搜索。为了促进可重复性和未来的研究,我们公开发布了六个数据集,框架的软件实施以及重现这项研究的代码。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
脑小血管疾病的成像标记提供了有关脑部健康的宝贵信息,但是它们的手动评估既耗时又受到实质性内部和间际变异性的阻碍。自动化评级可能受益于生物医学研究以及临床评估,但是现有算法的诊断可靠性尚不清楚。在这里,我们介绍了\ textIt {血管病变检测和分割}(\ textit {v textit {where valdo?})挑战,该挑战是在国际医学图像计算和计算机辅助干预措施(MICCAI)的卫星事件中运行的挑战(MICCAI) 2021.这一挑战旨在促进大脑小血管疾病的小而稀疏成像标记的自动检测和分割方法的开发,即周围空间扩大(EPVS)(任务1),脑微粒(任务2)和预先塑造的鞋类血管起源(任务3),同时利用弱和嘈杂的标签。总体而言,有12个团队参与了针对一个或多个任务的解决方案的挑战(任务1 -EPVS 4,任务2 -Microbleeds的9个,任务3 -lacunes的6个)。多方数据都用于培训和评估。结果表明,整个团队和跨任务的性能都有很大的差异,对于任务1- EPV和任务2-微型微型且对任务3 -lacunes尚无实际的结果,其结果尤其有望。它还强调了可能阻止个人级别使用的情况的性能不一致,同时仍证明在人群层面上有用。
translated by 谷歌翻译
黑色素瘤是一种严重的皮肤癌,在后期阶段高死亡率。幸运的是,当早期发现时,黑色素瘤的预后是有希望的,恶性黑色素瘤的发病率相对较低。结果,数据集严重不平衡,这使培训当前的最新监督分类AI模型变得复杂。我们建议使用生成模型来学习良性数据分布,并通过密度估计检测出分布(OOD)恶性图像。标准化流(NFS)是OOD检测的理想候选者,因为它们可以计算精确的可能性。然而,它们的感应偏见对明显的图形特征而不是语义上下文障碍障碍的OOD检测。在这项工作中,我们旨在将这些偏见与黑色素瘤的领域水平知识一起使用,以改善基于可能性的OOD检测恶性图像。我们令人鼓舞的结果表明,使用NFS检测黑色素瘤的可能性。我们通过使用基于小波的NFS,在接收器工作特性的曲线下,面积增加了9%。该模型需要较少的参数,以使其更适用于边缘设备。拟议的方法可以帮助医学专家诊断出皮肤癌患者并不断提高存活率。此外,这项研究为肿瘤学领域的其他领域铺平了道路,具有类似的数据不平衡问题\ footNote {代码可用:
translated by 谷歌翻译
可解释的人工智能(XAI)越来越多地用于分析神经网络的行为。概念激活使用人解剖概念来解释神经网络行为。这项研究旨在评估回归概念激活的可行性,以解释多模式体积数据的检测和分类。概念验证证明是在前列腺发射断层扫描/计算机断层扫描(PET/CT)成像的转移性前列腺癌患者中证明的。多模式的体积概念激活用于提供全球和局部解释。敏感性为80%,为每位患者的假阳性为1.78。全球解释表明,检测集中在CT上的解剖位置和PET上的检测信心。当地的解释显示出有望有助于区分真实积极因素和误报。因此,这项研究证明了使用回归概念激活来解释多模式体积数据的检测和分类的可行性。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译