Metaheuristics are popularly used in various fields, and they have attracted much attention in the scientific and industrial communities. In recent years, the number of new metaheuristic names has been continuously growing. Generally, the inventors attribute the novelties of these new algorithms to inspirations from either biology, human behaviors, physics, or other phenomena. In addition, these new algorithms, compared against basic versions of other metaheuristics using classical benchmark problems without shift/rotation, show competitive performances. In this study, we exhaustively tabulate more than 500 metaheuristics. To comparatively evaluate the performance of the recent competitive variants and newly proposed metaheuristics, 11 newly proposed metaheuristics and 4 variants of established metaheuristics are comprehensively compared on the CEC2017 benchmark suite. In addition, whether these algorithms have a search bias to the center of the search space is investigated. The results show that the performance of the newly proposed EBCM (effective butterfly optimizer with covariance matrix adaptation) algorithm performs comparably to the 4 well performing variants of the established metaheuristics and possesses similar properties and behaviors, such as convergence, diversity, exploration and exploitation trade-offs, in many aspects. The performance of all 15 of the algorithms is likely to deteriorate due to certain transformations, while the 4 state-of-the-art metaheuristics are less affected by transformations such as the shifting of the global optimal point away from the center of the search space. It should be noted that, except EBCM, the other 10 new algorithms proposed mostly during 2019-2020 are inferior to the well performing 2017 variants of differential evolution and evolution strategy in terms of convergence speed and global search ability on CEC 2017 functions.
translated by 谷歌翻译
Non-parametric tests can determine the better of two stochastic optimization algorithms when benchmarking results are ordinal, like the final fitness values of multiple trials. For many benchmarks, however, a trial can also terminate once it reaches a pre-specified target value. When only some trials reach the target value, two variables characterize a trial's outcome: the time it takes to reach the target value (or not) and its final fitness value. This paper describes a simple way to impose linear order on this two-variable trial data set so that traditional non-parametric methods can determine the better algorithm when neither dominates. We illustrate the method with the Mann-Whitney U-test. A simulation demonstrates that U-scores are much more effective than dominance when tasked with identifying the better of two algorithms. We test U-scores by having them determine the winners of the CEC 2022 Special Session and Competition on Real-Parameter Numerical Optimization.
translated by 谷歌翻译
The recently developed discrete diffusion models perform extraordinarily well in the text-to-image task, showing significant promise for handling the multi-modality signals. In this work, we harness these traits and present a unified multimodal generation model that can conduct both the "modality translation" and "multi-modality generation" tasks using a single model, performing text-based, image-based, and even vision-language simultaneous generation. Specifically, we unify the discrete diffusion process for multimodal signals by proposing a unified transition matrix. Moreover, we design a mutual attention module with fused embedding layer and a unified objective function to emphasise the inter-modal linkages, which are vital for multi-modality generation. Extensive experiments indicate that our proposed method can perform comparably to the state-of-the-art solutions in various generation tasks.
translated by 谷歌翻译
转移优化被理解为求解器之间的信息交换,以提高其性能,从过去几年中获得了群体和进化计算界的显着关注。这个研究区域很年轻,但以快速的节奏成长,是在一天后一天扩大的文学语料库的核心。不可否认的是,将转移优化的概念配制在实地上。然而,最近的贡献和我们在这一领域的经验中观察到的证据证实,迄今为止没有正确解决有关关键方面。这种短期沟通旨在将读者归于对这些问题的反思思考,提供理由为什么他们保持未解决,并呼吁紧急行动充分克服它们。具体而言,我们强调了进化多任务优化的三个关键点,可以说是在文献中最积极地研究的转移优化中的范例:i)多任务优化概念的合理性; ii)依靠进化计算和群体智能的一些提出的多任务方法的赞誉新的新颖性;和III)用于评估新提出的多任务算法的方法。我们与这种批评的最终目的是在这三个有问题方面观察到的弱点,因此前瞻性工作可以避免在同一个石头上绊倒,最终在正确的方向上实现宝贵的进步。
translated by 谷歌翻译
Artificial Intelligence (AI) and its data-centric branch of machine learning (ML) have greatly evolved over the last few decades. However, as AI is used increasingly in real world use cases, the importance of the interpretability of and accessibility to AI systems have become major research areas. The lack of interpretability of ML based systems is a major hindrance to widespread adoption of these powerful algorithms. This is due to many reasons including ethical and regulatory concerns, which have resulted in poorer adoption of ML in some areas. The recent past has seen a surge in research on interpretable ML. Generally, designing a ML system requires good domain understanding combined with expert knowledge. New techniques are emerging to improve ML accessibility through automated model design. This paper provides a review of the work done to improve interpretability and accessibility of machine learning in the context of global problems while also being relevant to developing countries. We review work under multiple levels of interpretability including scientific and mathematical interpretation, statistical interpretation and partial semantic interpretation. This review includes applications in three areas, namely food processing, agriculture and health.
translated by 谷歌翻译
作为生成部件作为自回归模型的向量量化变形式自动化器(VQ-VAE)的集成在图像生成上产生了高质量的结果。但是,自回归模型将严格遵循采样阶段的逐步扫描顺序。这导致现有的VQ系列模型几乎不会逃避缺乏全球信息的陷阱。连续域中的去噪扩散概率模型(DDPM)显示了捕获全局背景的能力,同时产生高质量图像。在离散状态空间中,一些作品已经证明了执行文本生成和低分辨率图像生成的可能性。我们认为,在VQ-VAE的富含内容的离散视觉码本的帮助下,离散扩散模型还可以利用全局上下文产生高保真图像,这补偿了沿像素空间的经典自回归模型的缺陷。同时,离散VAE与扩散模型的集成解决了传统的自回归模型的缺点是超大的,以及在生成图像时需要在采样过程中的过度时间的扩散模型。结果发现所生成的图像的质量严重依赖于离散的视觉码本。广泛的实验表明,所提出的矢量量化离散扩散模型(VQ-DDM)能够实现与低复杂性的顶层方法的相当性能。它还展示了在没有额外培训的图像修复任务方面与自回归模型量化的其他矢量突出的优势。
translated by 谷歌翻译
决策树的集合被称为随机森林。如Breiman所提出的,不稳定学习者的实力和它们之间的多样性是集合模型的核心力量。在本文中,我们提出了两种用于生成双随机森林的合奏方法。在第一种方法中,我们提出了一种基于双随机森林的旋转组合。在基于旋转的双随机林,在每个节点处产生特征空间的转换或旋转。在每个节点上选择不同随机特征子空间进行评估,因此每个节点处的变换是不同的。不同的转变导致基本学习者之间更好的多样性,因此,更好的泛化性能。随着双随机森林作为基础学习者,每个节点的数据通过两个不同的变换转换,即主成分分析和线性判别分析。在第二种方法中,我们提出了双随机森林的倾斜组合。在随机林和双随机森林中的决策树是单变量的,这导致轴并行分裂的产生,这不能捕获数据的几何结构。此外,标准随机森林可能不会产生足够大的决策树,从而导致次优的性能。为了捕获几何属性并生长足够深度的决策树,我们提出了双随机森林的倾斜集合。双随机森林模型的倾斜集合是多元决策树。在每个非叶节点上,多面近端支持向量机产生最佳平面以获得更好的泛化性能。此外,不同的正则化技术(Tikhonov正则化和轴并行分裂正则化)用于解决双随机林的倾斜组合决策树中的小样本大小问题。
translated by 谷歌翻译
合奏学习结合了几个单独的模型,以获得更好的概括性能。目前,与浅层或传统模型相比,深度学习体系结构表现更好。深度合奏学习模型结合了深度学习模型以及整体学习的优势,使最终模型具有更好的概括性能。本文回顾了最先进的深度合奏模型,因此是研究人员的广泛摘要。合奏模型广泛地分类为包装,增强,堆叠,基于负相关的深度合奏模型,显式/隐式合奏,同质/异质合奏,基于决策融合策略的深层集合模型。还简要讨论了在不同领域中深层集成模型的应用。最后,我们以一些潜在的未来研究方向结束了本文。
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based Neural Architecture Search (NAS) method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. To this end, we introduce the Pseudo-Inverted Bottleneck conv block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower GMACs and parameter count, GradCAM comparisons show that our network is able to better detect distinctive features of target objects compared to DARTS.
translated by 谷歌翻译