Estimation of the T2 distribution from multi-echo T2-Weighted MRI (T2W) data can provide insight into the microscopic content of tissue using macroscopic imaging. This information can be used as a biomarker for several pathologies, such as tumor characterization, osteoarthritis, and neurodegenerative diseases. Recently, deep neural network (DNN) based methods were proposed for T2 distribution estimation from MRI data. However, these methods are highly sensitive to distribution shifts such as variations in the echo-times (TE) used during acquisition. Therefore, DNN-based methods cannot be utilized in large-scale multi-institutional trials with heterogeneous acquisition protocols. We present P2T2, a new physically-primed DNN approach for T2 distribution estimation that is robust to different acquisition parameters while maintaining state-of-the-art estimation accuracy. Our P2T2 model encodes the forward model of the signal decay by taking as input the TE acquisition array, in addition to the MRI signal, and provides an estimate of the corresponding T2 distribution as its output. Our P2T2 model has improved the robustness against distribution shifts in the acquisition process by more than 50% compared to the previously proposed DNN model. When tested without any distribution shifts, our model achieved about the same accuracy. Finally, when applied to real human MRI data, our P2T2 model produced the most detailed Myelin-Water fraction maps compared to both the MIML model and classical approaches. Our proposed physically-primed approach improved the generalization capacity of DNN models for T2 distribution estimation and their robustness against distribution shifts compared to previous approaches without compromising the accuracy.
translated by 谷歌翻译
在过去的几年中,提出了多种基于深神经网络(DNN)的方法,以解决来自未取消采样的“ K-Space”(傅立叶域)数据的挑战性不足的反向问题。然而,反对采集过程中的变化和解剖学分布的不稳定性表明,与其经典的对应物相比,DNN体系结构对相关物理模型的概括不佳。较差的概括有效地排除了DNN适用于临床环境中不足采样的MRI重建。我们通过引入物理培养的DNN体系结构和培训方法来提高DNN方法的泛化MRI重建能力。除了模型体系结构中观察到的数据外,我们的体系结构还编码底面采样掩码,并采用适当的培训方法,该方法使用与各种无底采样掩码生成的数据一起鼓励模型概括了未散布的MRI重建问题。我们通过对公开可用的快速MRI数据集进行了广泛的实验,证明了我们的方法的附加价值。我们的物理提出的方法达到了增强的概括能力,这使得与获得的稳健性和解剖学分布的变化相比,尤其是在病理区域中,与香草DNN方法和DNN进行了显着提高,并在病理区域中进行了显着提高,并且受过培训的DNN训练,并接受了强烈的掩盖掩模的增强。接受训练的模型和代码以复制我们的实验,将在接受后用于研究目的。
translated by 谷歌翻译
评估患者结直肠癌的微卫星稳定性状态对于个性化治疗方案至关重要。最近,提出了卷积 - 神经网络(CNN)与转移学习方法结合使用,以规避传统的实验室测试,以确定苏木精和曙红染色的活检全幻灯片图像(WSI)的微卫星状态。但是,WSI的高分辨率实际上阻止了整个WSI的直接分类。当前方法通过先对WSI提取的小斑块进行分类,然后汇总补丁级分类徽标来推断患者级状态,从而绕过WSI高分辨率。这种方法限制了捕获位于高分辨率WSI数据的重要信息的能力。我们引入了一种有效的方法,通过对贴片嵌入的动量学习以及在这些嵌入组的组上培训患者级分类器,以利用WSI高分辨率信息。与直接的补丁级分类和患者水平聚合方法相比,我们的方法的准确性高达7.4 \%(AUC,$ 0.91 \ pm 0.01 $ vs. $ 0.85 \ $ 0.85 \ pm 0.04 $,p Value $ <0.01 $ )。我们的代码可以在https://github.com/technioncomputationalmrilab/coleroctal_cancer_ai上找到。
translated by 谷歌翻译
简介:对于监督的深度学习(DL)任务,研究人员需要大量注释的数据集。在医学数据科学中,开发DL模型的主要局限性之一是缺乏大量注释的示例。这通常是由于注释所需的时间和专业知识。我们介绍了Lirot.ai,这是一个新颖的平台,用于促进和拥挤的图像细分。方法:lirot.ai由三个组成部分组成; iPados客户端应用程序名为lirot.ai-app,名为lirot.ai-server和python api name lirot.ai-api的后端服务器。 lirot.ai-app是在Swift 5.6中开发的,Lirot.AI-Server是Firebase后端。 lirot.ai-api允许管理数据库。可以根据需要将LIROT.AIP APP安装在尽可能多的iPados设备上,以便注释者可以同时且远程执行其分割。我们将Apple铅笔的兼容性结合在一起,使专家比任何其他基于计算机的替代方案都更快,更准确,更直观。结果:我们证明了Lirot.ai用于创建具有参考血管分段的视网膜眼底数据集的用法。讨论和未来的工作:我们将使用积极的学习策略来继续扩大视网膜眼底数据集,包括更有效的过程来选择要注释的图像并将其分发给注释者。
translated by 谷歌翻译
胎儿肺扩散加权MRI(DWI)数据的定量分析显示,提供了提供的定量成像生物标志物,这些生物标志物间接反映了胎儿肺的成熟。但是,采集期间的胎儿运动阻碍了对获得的DWI数据的定量分析,因此妨碍了可靠的临床利用。我们介绍了QDWI-Morph,这是一种无监督的深神经网络结构,用于运动补偿定量DWI(QDWI)分析。我们的方法将注册子网络与定量DWI模型拟合子网络融合。我们同时估计QDWI参数和运动模型,通过最大程度地降低整合注册损失和模型拟合质量损失的生物形态信息损失函数。我们证明了QDWI-MORPH的附加值:1)基线QDWI分析没有运动补偿和2)仅包含注册损失的基线深学习模型。 QDWI-morph通过对胎儿肺DWI数据的体内QDWI分析(r-squared = 0.32 vs. 0.13,0.28)实现了与胎龄的相关性。我们的QDWI-MORPH有可能对DWI数据进行运动补偿的定量分析,并为非侵入性胎儿肺成熟度评估提供临床上可行的生物标志物。我们的代码可在以下网址获得:https://github.com/technioncomputationalmrilab/qdwi-morph。
translated by 谷歌翻译
基于深度学习(DL)图像重建模型中的不确定性定量对于基于重建图像的可靠临床决策至关重要。我们介绍了“ NPB-REC”,这是一种非参数完全贝叶斯的框架,用于从不足采样的“ K-Space”数据中进行MRI重建的不确定性评估。我们在训练阶段使用随机梯度Langevin动力学(SGLD)来表征网络权重的后验分布。与基线E2E-VARNET相比,我们在Multi-Coil Brain MRI数据集上展示了我们在多线圈脑MRI数据集上的附加价值。我们的实验表明,NPB-Rec通过重建精度优于基线(PSNR和SSIM $ 34.55 $,$ 0.908 $ vs. $ 33.08 $,$ 0.897 $,$ P <0.01 $)的高加速度($ R = 8 $) 。这也在临床注释区域中进行了衡量。更重要的是,与蒙特 - 卡洛推理时间辍学方法相比,它提供了与重建误差相关的不确定性(Pearson相关系数$ r = 0.94 $ vs. $ r = 0.91 $)的不确定性。所提出的方法具有促进基于DL的方法从未采样数据的MRI重建方法的安全利用。 \ url {https://github.com/samahkh/npb-rec}提供了代码和训练有素的模型。
translated by 谷歌翻译
简介:血管可以从数字眼底图像(DFI)中可视化。几项研究表明,从DFI获得的心血管风险与血管特征之间存在关联。计算机视觉和图像分割的最新进展使自动化DFI血管分割。需要从这些分段DFI中自动计算数字脉管生物标志物(VBM)的资源。方法:在本文中,我们引入了Python Vasculature生物标志物工具箱,表示为PVBM。总共实施了11个VBM。特别是,我们引入了新的算法方法来估计曲折和分支角度。使用PVBM和作为可用性的证明,我们分析了青光眼患者和健康对照组之间的几何血管差异。结果:我们基于DFI分割构建了一个全自动的血管生物标志物工具箱,并提供了表征青光眼的血管变化的可用性证明。对于小动脉和静脉,与健康对照组相比,青光眼患者的所有生物标志物都显着且较低,除了曲折度,静脉奇异长度和静脉分支角度。结论:我们已经从视网膜血管分割中对11个VBM进行了自动化。 PVBM工具箱是根据GNU GPL 3许可证的开源,可在Physiozoo.com(发布之后)上找到。
translated by 谷歌翻译
新辅助化疗(NAC)对乳腺癌的病理完全反应(PCR)的早期预测在手术计划和优化治疗策略中起着至关重要的作用。最近,建议从多参数MRI(MP-MRI)数据(包括动态对比增强的MRI和扩散加权MRI(DWI))中的多参数MRI(MP-MRI)数据提出基于机器和深度学习的方法。我们引入了PD-DWI,这是一种生理分解的DWI机器学习模型,可预测DWI和临床数据的PCR。我们的模型首先将RAW DWI数据分解为影响DWI信号的各种生理线索,然后使用分解数据,除了临床变量外,还用作基于放射线学的XGBoost模型的输入特征。我们使用公开可用的乳房多参数MRI来预测NAC响应(BMMR2)挑战的公共乳房多参数MRI,证明了PD-DWI模型的添加值与传统的机器学习方法相比,用于从MP-MRI数据进行PCR预测的传统机器学习方法。与当前排行榜上的最佳结果(0.8849 vs. 0.8397)相比,我们的模型大大改善了曲线下的面积(AUC)。 PD-DWI有可能改善NAC乳腺癌后PCR的预测,减少MP-MRI的总体采集时间,并消除对比造影剂注射的需求。
translated by 谷歌翻译
对胎儿肺扩散加权MRI(DWI)的数据分析(IVIM)分析显示了提供定量成像的生物标志物的潜力,这些标志物是间接地反映出非侵入性胎儿肺肺部成熟评估的扩散和伪扩散的。然而,由于IVIM分析所需的大量不同的“ B值”图像,较长的获取时间,排除了临床可行性。我们介绍了Super-IVIM-DC一种深神经网络(DNN)方法,该方法将监督损失与数据矛盾项相结合,以实现IVIM分析以有限数量的B值获得的DWI数据。我们通过数值模拟,健康的志愿者研究和IVIM分析了胎儿DWI数据的胎儿肺成熟,从而证明了超级IVIM-DC在经典和最近的DNN方法中的附加价值。 %添加结果我们的数值模拟和健康的志愿者研究表明,与以前的基于DNN的方法相比,来自有限DWI数据的IVIM模型参数的超级IVIM-DC估计值较低。此外,与经典和基于DNN的方法相比,胎儿肺有限的DWI数据的伪扩散分数参数的超级IVIM-DC估计与胎龄相关(0.242 vs. -0.079和0.239)。 Super-IVIM-DC有可能减少与IVIM数据分析DWI数据相关的长期获取时间,并为非侵入性胎儿肺成熟度评估提供临床上可行的生物标志物。
translated by 谷歌翻译
超声是医学成像中第二大大量的模式。它具有成本效益,无害,便携式和在众多临床程序中常规实施。尽管如此,图像质量的特征是外观磨砂,较差的SNR和斑点噪声。对于恶性肿瘤,边缘是模糊的。因此,非常需要改善超声图像质量。我们假设使用神经网络可以通过转化为更现实的显示,该显示模仿了整个组织的解剖学切割,可以实现这一目标。为了实现此目标,最好的方法是使用一组配对图像。但是,在我们的情况下,这实际上是不可能的。因此,使用了循环生成的对抗网络(Cyclegan),以分别学习每个域性能并强制执行跨域循环一致性。用于训练的两个数据集该模型是“乳房超声图像”(BUSI)和在我们实验室获取的家禽乳腺组织样品的一组光学图像。生成的伪解剖图像可改善对病变的视觉歧视,并具有更清晰的边界定义和明显的对比度。为了评估解剖学特征的保存,超声图像中的病变和生成的伪解剖图像均自动分割和比较。这种比较得出的良性肿瘤的中位骰子得分为0.91,恶性肿瘤的骰子得分为0.70。良性和恶性肿瘤的中位病变中心误差分别为0.58%和3.27%,良性和恶性肿瘤的中值面积误差指数分别为0.40%和4.34%。总之,这些产生的伪解剖图像以更直观的方式呈现,可以增强组织解剖结构,并有可能简化诊断并改善临床结果。
translated by 谷歌翻译