Data scarcity is one of the main issues with the end-to-end approach for Speech Translation, as compared to the cascaded one. Although most data resources for Speech Translation are originally document-level, they offer a sentence-level view, which can be directly used during training. But this sentence-level view is single and static, potentially limiting the utility of the data. Our proposed data augmentation method SegAugment challenges this idea and aims to increase data availability by providing multiple alternative sentence-level views of a dataset. Our method heavily relies on an Audio Segmentation system to re-segment the speech of each document, after which we obtain the target text with alignment methods. The Audio Segmentation system can be parameterized with different length constraints, thus giving us access to multiple and diverse sentence-level views for each document. Experiments in MuST-C show consistent gains across 8 language pairs, with an average increase of 2.2 BLEU points, and up to 4.7 BLEU for lower-resource scenarios in mTEDx. Additionally, we find that SegAugment is also applicable to purely sentence-level data, as in CoVoST, and that it enables Speech Translation models to completely close the gap between the gold and automatic segmentation at inference time.
translated by 谷歌翻译
While the problem of hallucinations in neural machine translation has long been recognized, so far the progress on its alleviation is very little. Indeed, recently it turned out that without artificially encouraging models to hallucinate, previously existing methods fall short and even the standard sequence log-probability is more informative. It means that characteristics internal to the model can give much more information than we expect, and before using external models and measures, we first need to ask: how far can we go if we use nothing but the translation model itself ? We propose to use a method that evaluates the percentage of the source contribution to a generated translation. Intuitively, hallucinations are translations "detached" from the source, hence they can be identified by low source contribution. This method improves detection accuracy for the most severe hallucinations by a factor of 2 and is able to alleviate hallucinations at test time on par with the previous best approach that relies on external models. Next, if we move away from internal model characteristics and allow external tools, we show that using sentence similarity from cross-lingual embeddings further improves these results.
translated by 谷歌翻译
End-to-End speech-to-speech translation (S2ST) is generally evaluated with text-based metrics. This means that generated speech has to be automatically transcribed, making the evaluation dependent on the availability and quality of automatic speech recognition (ASR) systems. In this paper, we propose a text-free evaluation metric for end-to-end S2ST, named BLASER, to avoid the dependency on ASR systems. BLASER leverages a multilingual multimodal encoder to directly encode the speech segments for source input, translation output and reference into a shared embedding space and computes a score of the translation quality that can be used as a proxy to human evaluation. To evaluate our approach, we construct training and evaluation sets from more than 40k human annotations covering seven language directions. The best results of BLASER are achieved by training with supervision from human rating scores. We show that when evaluated at the sentence level, BLASER correlates significantly better with human judgment compared to ASR-dependent metrics including ASR-SENTBLEU in all translation directions and ASR-COMET in five of them. Our analysis shows combining speech and text as inputs to BLASER does not increase the correlation with human scores, but best correlations are achieved when using speech, which motivates the goal of our research. Moreover, we show that using ASR for references is detrimental for text-based metrics.
translated by 谷歌翻译
在全球范围内消除语言障碍的目标的驱动下,机器翻译已巩固自己是当今人工智能研究的关键重点。但是,这样的努力围绕着一小部分语言结合在一起,留下了绝大多数低资源的语言。在确保安全,高质量的结果的同时,在牢记道德考虑的同时,打破200个语言障碍需要什么?没有留下的语言,我们首先通过与母语人士的探索性访谈来解决对低资源语言翻译支持的必要性来应对这一挑战。然后,我们创建了旨在缩小低资源和高资源语言之间的性能差距的数据集和模型。更具体地说,我们开发了一种有条件的计算模型,基于专家的稀疏混合物,该模型经过针对针对低资源语言量身定制的新颖有效的数据挖掘技术培训的。我们提出了多次建筑和培训改进,以抵消数千个任务的培训。至关重要的是,我们使用人类翻译的基准,Flores-200评估了40,000多种不同的翻译方向的性能,并将人类评估与新型毒性基准相结合,涵盖Flores-200的所有语言,以评估翻译安全性。我们的模型相对于先前的最新技术,实现了44%BLEU的改善,为实现通用翻译系统奠定了重要的基础。最后,我们开源此工作中描述的所有贡献,可在https://github.com/facebookresearch/fairseq/tree/nllb上访问。
translated by 谷歌翻译
In Neural Machine Translation (NMT), each token prediction is conditioned on the source sentence and the target prefix (what has been previously translated at a decoding step). However, previous work on interpretability in NMT has mainly focused solely on source sentence tokens' attributions. Therefore, we lack a full understanding of the influences of every input token (source sentence and target prefix) in the model predictions. In this work, we propose an interpretability method that tracks input tokens' attributions for both contexts. Our method, which can be extended to any encoder-decoder Transformer-based model, allows us to better comprehend the inner workings of current NMT models. We apply the proposed method to both bilingual and multilingual Transformers and present insights into their behaviour.
translated by 谷歌翻译
语音翻译模型无法直接处理较长的音频,例如TED Talks,必须将其分为较短的段。语音翻译数据集提供了音频的手动分割,这些音频在现实世界中不可用,而现有的分割方法通常会在推理时大大降低翻译质量。为了弥合训练的手动分割与推理的自动分割之间的差距,我们提出了有监督的混合音频分割(SHAS),该方法可以有效地从任何手动分段语音语料库中学习最佳分割。首先,我们使用预先训练的WAV2VEC 2.0的语音表示形式来训练分类器,以识别分段中所包含的帧。然后,通过概率分裂和诱导算法找到最佳的分裂点,该算法逐渐在最低概率的框架下逐渐分裂,直到所有段都低于预先指定的长度为止。在Mast-C和MedX上进行的实验表明,通过我们的方法生成的片段的翻译方法将手动分割的质量在5个语言对上进行质量。也就是说,SHAS保留了手动细分的95-98%的BLEU分数,而现有方法的87-93%。我们的方法还可以推广到不同的域,并以看不见的语言实现高零弹性性能。
translated by 谷歌翻译
Given a finite and noisy dataset generated with a closed-form mathematical model, when is it possible to learn the true generating model from the data alone? This is the question we investigate here. We show that this model-learning problem displays a transition from a low-noise phase in which the true model can be learned, to a phase in which the observation noise is too high for the true model to be learned by any method. Both in the low-noise phase and in the high-noise phase, probabilistic model selection leads to optimal generalization to unseen data. This is in contrast to standard machine learning approaches, including artificial neural networks, which in this particular problem are limited, in the low-noise phase, by their ability to interpolate. In the transition region between the learnable and unlearnable phases, generalization is hard for all approaches including probabilistic model selection.
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
A Digital Twin (DT) is a simulation of a physical system that provides information to make decisions that add economic, social or commercial value. The behaviour of a physical system changes over time, a DT must therefore be continually updated with data from the physical systems to reflect its changing behaviour. For resource-constrained systems, updating a DT is non-trivial because of challenges such as on-board learning and the off-board data transfer. This paper presents a framework for updating data-driven DTs of resource-constrained systems geared towards system health monitoring. The proposed solution consists of: (1) an on-board system running a light-weight DT allowing the prioritisation and parsimonious transfer of data generated by the physical system; and (2) off-board robust updating of the DT and detection of anomalous behaviours. Two case studies are considered using a production gas turbine engine system to demonstrate the digital representation accuracy for real-world, time-varying physical systems.
translated by 谷歌翻译
We consider infinite horizon Markov decision processes (MDPs) with fast-slow structure, meaning that certain parts of the state space move "fast" (and in a sense, are more influential) while other parts transition more "slowly." Such structure is common in real-world problems where sequential decisions need to be made at high frequencies, yet information that varies at a slower timescale also influences the optimal policy. Examples include: (1) service allocation for a multi-class queue with (slowly varying) stochastic costs, (2) a restless multi-armed bandit with an environmental state, and (3) energy demand response, where both day-ahead and real-time prices play a role in the firm's revenue. Models that fully capture these problems often result in MDPs with large state spaces and large effective time horizons (due to frequent decisions), rendering them computationally intractable. We propose an approximate dynamic programming algorithmic framework based on the idea of "freezing" the slow states, solving a set of simpler finite-horizon MDPs (the lower-level MDPs), and applying value iteration (VI) to an auxiliary MDP that transitions on a slower timescale (the upper-level MDP). We also extend the technique to a function approximation setting, where a feature-based linear architecture is used. On the theoretical side, we analyze the regret incurred by each variant of our frozen-state approach. Finally, we give empirical evidence that the frozen-state approach generates effective policies using just a fraction of the computational cost, while illustrating that simply omitting slow states from the decision modeling is often not a viable heuristic.
translated by 谷歌翻译