Human motion prediction is a complex task as it involves forecasting variables over time on a graph of connected sensors. This is especially true in the case of few-shot learning, where we strive to forecast motion sequences for previously unseen actions based on only a few examples. Despite this, almost all related approaches for few-shot motion prediction do not incorporate the underlying graph, while it is a common component in classical motion prediction. Furthermore, state-of-the-art methods for few-shot motion prediction are restricted to motion tasks with a fixed output space meaning these tasks are all limited to the same sensor graph. In this work, we propose to extend recent works on few-shot time-series forecasting with heterogeneous attributes with graph neural networks to introduce the first few-shot motion approach that explicitly incorporates the spatial graph while also generalizing across motion tasks with heterogeneous sensors. In our experiments on motion tasks with heterogeneous sensors, we demonstrate significant performance improvements with lifts from 10.4% up to 39.3% compared to best state-of-the-art models. Moreover, we show that our model can perform on par with the best approach so far when evaluating on tasks with a fixed output space while maintaining two magnitudes fewer parameters.
translated by 谷歌翻译
Time series, sets of sequences in chronological order, are essential data in statistical research with many forecasting applications. Although recent performance in many Transformer-based models has been noticeable, long multi-horizon time series forecasting remains a very challenging task. Going beyond transformers in sequence translation and transduction research, we observe the effects of down-and-up samplings that can nudge temporal saliency patterns to emerge in time sequences. Motivated by the mentioned observation, in this paper, we propose a novel architecture, Temporal Saliency Detection (TSD), on top of the attention mechanism and apply it to multi-horizon time series prediction. We renovate the traditional encoder-decoder architecture by making as a series of deep convolutional blocks to work in tandem with the multi-head self-attention. The proposed TSD approach facilitates the multiresolution of saliency patterns upon condensed multi-heads, thus progressively enhancing complex time series forecasting. Experimental results illustrate that our proposed approach has significantly outperformed existing state-of-the-art methods across multiple standard benchmark datasets in many far-horizon forecasting settings. Overall, TSD achieves 31% and 46% relative improvement over the current state-of-the-art models in multivariate and univariate time series forecasting scenarios on standard benchmarks. The Git repository is available at https://github.com/duongtrung/time-series-temporal-saliency-patterns.
translated by 谷歌翻译
We propose a novel multi-task method for quantile forecasting with shared Linear layers. Our method is based on the Implicit quantile learning approach, where samples from the Uniform distribution $\mathcal{U}(0, 1)$ are reparameterized to quantile values of the target distribution. We combine the implicit quantile and input time series representations to directly forecast multiple quantile estimations for multiple horizons jointly. Prior works have adopted a Linear layer for the direct estimation of all forecasting horizons in a multi-task learning setup. We show that following similar intuition from multi-task learning to exploit correlations among forecast horizons, we can model multiple quantile estimates as auxiliary tasks for each of the forecast horizon to improve forecast accuracy across the quantile estimates compared to modeling only a single quantile estimate. We show learning auxiliary quantile tasks leads to state-of-the-art performance on deterministic forecasting benchmarks concerning the main-task of forecasting the 50$^{th}$ percentile estimate.
translated by 谷歌翻译
机器学习(ML)为生物处理工程的发展做出了重大贡献,但其应用仍然有限,阻碍了生物过程自动化的巨大潜力。用于模型构建自动化的ML可以看作是引入另一种抽象水平的一种方式,将专家的人类集中在生物过程开发的最认知任务中。首先,概率编程用于预测模型的自动构建。其次,机器学习会通过计划实验来测试假设并进行调查以收集信息性数据来自动评估替代决策,以收集基于模型预测不确定性的模型选择的信息数据。这篇评论提供了有关生物处理开发中基于ML的自动化的全面概述。一方面,生物技术和生物工程社区应意识到现有ML解决方案在生物技术和生物制药中的应用的限制。另一方面,必须确定缺失的链接,以使ML和人工智能(AI)解决方案轻松实施在有价值的生物社区解决方案中。我们总结了几个重要的生物处理系统的ML实施,并提出了两个至关重要的挑战,这些挑战仍然是生物技术自动化的瓶颈,并减少了生物技术开发的不确定性。没有一个合适的程序;但是,这项综述应有助于确定结合生物技术和ML领域的潜在自动化。
translated by 谷歌翻译
异步时间序列是一个多元时间序列,在该时间序列中,所有通道都被观察到异步独立的,使得时间序列在对齐时极为稀疏。我们经常在具有复杂的观察过程(例如医疗保健,气候科学和天文学)的应用中观察到这种影响,仅举几例。由于异步性质,它们对深度学习体系结构构成了重大挑战,假定给他们的时间序列定期采样,完全观察并与时间对齐。本文提出了一个新颖的框架,我们称深卷积集功能(DCSF),该功能高度可扩展且有效,对于异步时间序列分类任务。随着深度学习体系结构的最新进展,我们引入了一个模型,该模型不变了,在此订单中呈现了时间序列的频道。我们探索卷积神经网络,该网络对定期采样和完全观察到的时间序列的紧密相关的问题分类进行了很好的研究,以编码设置元素。我们评估DCSF的ASTS分类和在线(每个时间点)ASTS分类。我们在多个现实世界和合成数据集上进行的广泛实验验证了建议的模型在准确性和运行时间方面的表现优于一系列最新模型。
translated by 谷歌翻译
机器学习(ML)方法已成为解决车辆路由问题的有用工具,可以与流行的启发式方法或独立模型结合使用。但是,当解决不同大小或不同分布的问题时,当前的方法的概括不佳。结果,车辆路由中的ML见证了一个扩展阶段,为特定问题实例创建了新方法,这些方法在较大的问题大小上变得不可行。本文旨在通过理解和改善当前现有模型,即Kool等人的注意模型来鼓励该领域的整合。我们确定了VRP概括的两个差异类别。第一个是基于问题本身固有的差异,第二个与限制模型概括能力的建筑弱点有关。我们的贡献变成了三倍:我们首先通过适应Kool等人来靶向模型差异。方法及其基于alpha-entmax激活的稀疏动态注意力的损耗函数。然后,我们通过使用混合实例训练方法来靶向固有的差异,该方法已被证明在某些情况下超过了单个实例培训。最后,我们介绍了推理水平数据增强的框架,该框架通过利用模型缺乏旋转和扩张变化的不变性来提高性能。
translated by 谷歌翻译
这项工作通过调整适合常规TSP的最新方法,使用深入的加固学习(DRL)提出了使用优先限制(TSPPC)的解决方案。这些方法共有的是基于多头注意(MHA)层的图形模型的使用。解决拾取和交付问题(PDP)的一个想法是使用异质注意来嵌入每个节点可以扮演的不同可能的角色。在这项工作中,我们将这种异质注意的概念推广到TSPPC。此外,我们适应了最近的想法,以使注意力稀疏以获得更好的可扩展性。总体而言,我们通过对解决TSPPC的最新DRL方法的应用和评估为研究界做出了贡献。
translated by 谷歌翻译
组合优化问题在许多实际情况(例如物流和生产)中遇到,但是精确的解决方案尤其难以找到,通常对于大量的问题大小而言,通常是NP-HARD。为了计算近似解决方案,通常使用局部搜索的通用和特定问题的动物园。但是,哪种变体适用于哪种特定问题,即使对于专家来说也很难决定。在本文中,我们确定了这种本地搜索算法的三个独立算法方面,并将其在优化过程中正式选择为马尔可夫决策过程(MDP)。我们将深图神经网络设计为该MDP的策略模型,为当地搜索提供了一个名为Neurols的局部搜索控制器。充分的实验证据表明,神经元能够胜过操作研究和最新基于机器学习的方法的众所周知的通用本地搜索控制器。
translated by 谷歌翻译
鉴于新的数据集D和低计算预算,我们应该如何选择预培训的模型来微调D,并设置微调的超参数而不冒险过度拟合,尤其是在D小的情况下?在这里,我们扩展了自动化的机器学习(AUTOML),以最好地做出这些选择。我们与域无关的元学习方法学习了一个零拍的替代模型,在测试时,该模型允许选择正确的深度学习(DL)管道(包括预训练的模型和微调的超参数)仅给定描述d的琐碎元功能,例如图像分辨率或类的数量。为了训练这种零射模型,我们在大量数据集中收集了许多DL管道的性能数据,并在此数据上收集了元训练,以最大程度地减少成对排名目标。我们在Chalearn AutoDL挑战基准的视觉轨道的严格时间限制下评估我们的方法,显然优于所有挑战竞争者。
translated by 谷歌翻译
学习复杂的时间序列预测模型通常需要大量数据,因为每个任务/数据集都会从头开始训练每个模型。利用类似数据集利用学习经验是一种公认​​的技术,用于分类问题,称为几个射击分类。但是,现有方法不能应用于预测时间序列,因为i)多元时间序列数据集具有不同的渠道,ii)预测与分类主要不同。在本文中,我们首次使用异质通道对时间序列的几个预测进行正式的问题。扩展了有关矢量数据中异质属性的最新工作,我们开发了一个由置换不变的深set块组成的模型,该模型结合了时间嵌入。我们组装了40个多元时间序列数据集的第一个元数据集,并通过实验显示我们的模型提供了一个良好的概括,优于从更简单的场景中延续的基线,这些基线要么无法跨任务学习或错过时间信息。
translated by 谷歌翻译