我们研究公平的机器学习(ML)设置,其中“上游”模型开发人员的任务是生产公平的ML模型,该模型将被几个类似但独特的“下游”用户使用。这种设置引入了新的挑战,这些挑战因许多现有的公平干预措施而尚未解决,这与现有的批评相呼应,即当前方法并非在现实世界公平的ML用例的多元化需求中广泛适用。为此,我们通过采用基于分配的公平分类视图来解决向上/下流设置。具体而言,我们引入了一种新的公平定义,分布奇偶校验,该定义衡量了跨受保护组的结果分布的差异,并提出了一种后处理方法,以使用最佳运输技术来最大程度地减少此措施。我们证明我们的方法能够为所有下游用户,跨各种公平定义创造更公平的成果,并在推理时间内在未标记的数据上工作。我们通过与几种类似方法和四个基准任务进行比较,通过比较实验验证了这一主张。最终,我们认为可以通过开发特定的干预措施来产生更公平的分类结果。
translated by 谷歌翻译
可说明的机器学习(ML)近年来由于许多部门的ML基系统的增加而增加了近年来。算法refurrses(ARS)提供“如果输入数据点为x'而不是x的形式的反馈,那么基于ML的系统的输出将是Y'而不是Y.”由于其可行的反馈,对现有的法律框架和忠诚于底层ML模型,ARS由于其可行的反馈而具有吸引力。然而,当前的AR方法是单次拍摄 - 也就是说,它们假设X可以在单个时间段内更改为X'。我们提出了一种新的基于随机控制的方法,它产生序贯ARS,即允许X随机X移动到最终状态X'的ARS。我们的方法是模型不可知论和黑匣子。此外,ARS的计算被摊销,使得一旦训练,它适用于多个DataPoints,而无需重新优化。除了这些主要特征之外,我们的方法还承认可选的Desiderata,例如遵守数据歧管,尊重因果关系和稀疏性 - 通过过去的研究确定的ARS的理想性质。我们使用三个现实世界数据集评估我们的方法,并表现出尊重其他追索者的顺序ARS的成功生成。
translated by 谷歌翻译
非参考语音质量模型对于越来越多的应用程序很重要。 VoiceMos 2022挑战提供了一个带有主观标签的合成语音转换和文本到语音样本的数据集。这项研究着眼于在元数据的主观语音质量和数据集的分布不平衡的主观评级中可以解释的差异。使用WAV2VEC 2.0构建语音质量模型,具有其他元数据功能,其中包括评估者组和系统标识符,并获得了竞争性指标,包括Spearman等级相关系数(SRCC)为0.934,MSE为0.088,在系统级别和0.877和0.198和0.198和0.198的MSE和0.198话语级别。使用数据限制或盲目的数据和元数据进一步改善了指标。元数据分析表明,由于验证和测试数据集中每个系统使用的话语数量的广泛变化,系统级指标并不代表模型的系统级预测。我们得出的结论是,通常,条件在测试集中应具有足够的话语以绑定样本平均误差,并且在系统之间的话语计数中相对平衡,否则话语级别的指标可能更可靠和可解释。
translated by 谷歌翻译
te reo m \ = aori(称为m \ = aori),新西兰的土著语言在语言技术中的资源不足。 m \ = aori扬声器是双语的,其中m \ = aori用英语进行了代码开关。不幸的是,M \ = AORI语言技术,语言检测和M \ = Aori-English对之间的代码转换检测的资源最少。英语和M \ = AORI都使用罗马衍生的拼字法制作基于规则的系统来检测语言和代码转换限制性。大多数M \ = AORI语言检测是由语言专家手动完成的。这项研究构建了66,016,807个单词的Aori英语双语数据库,并带有单词级语言注释。新西兰议会汉萨德辩论报告用于构建数据库。语言标签是使用特定语言规则和专家手册注释分配的。 M \ = AORI和英语的单词具有相同的拼写,但含义不同。这些词不能根据单词级的语言规则将其归类为M \ = AORI或英语。因此,需要手动注释。还报道了报告数据库的各个方面的分析,例如元数据,逐年分析,经常出现的单词,句子长度和n-grams。这里开发的数据库是新西兰Aotearoa的未来语言和语音技术开发的宝贵工具。遵循标签数据库的方法也可以遵循其他低资源的语言对。
translated by 谷歌翻译
使用深度学习对胸部射线照相的自动分析具有巨大的潜力,可以增强患者疾病的临床诊断。但是,深度学习模型通常需要大量的带注释的数据来实现高性能 - 通常是医疗领域适应的障碍。在本文中,我们构建了一个利用放射学报告来通过有限的标记数据(少于1000个示例)来改善医学图像分类性能,以提高医学图像分类性能。具体而言,我们检查了捕获图像预告片,以学习以更少的例子进行训练的高质量医学图像表示。在对卷积编码器和变压器解码器进行联合预测之后,我们将学习的编码器转移到各种分类任务中。平均9多种病理学,我们发现我们的模型在标记培训数据受到限制时,比参见和内域监督的预处理的分类性能更高。
translated by 谷歌翻译
当经过自动化决策时,决策主题将战略性地修改其可观察特征,他们认为可以最大限度地提高收到理想的结果的机会。在许多情况下,潜在的预测模型是故意保密的,以避免游戏并保持竞争优势。这种不透明度迫使决策主题依赖于制定战略功能修改时依赖不完整的信息。我们将这样的设置捕获作为贝叶斯劝说的游戏,其中决策者发送信号,例如动作建议,以便决定受激励他们采取理想的行动。我们制定决策者找到最佳贝叶斯激励兼容(BIC)行动推荐策略作为优化问题的问题,并通过线性程序表征解决方案。通过这种特征,我们观察到,虽然可以显着地简化了找到最佳BIC推荐策略的问题,但是解决该线性程序的计算复杂性与(1)决策主题的动作空间的相对大小紧密相关(2)基础预测模型利用的特征数。最后,我们提供了最佳BIC推荐政策的性能的界限,并表明与标准基线相比,它可能导致任意更好的结果。
translated by 谷歌翻译
为了分析多维数据的丰富,已经开发了张量的框架。传统上,矩阵奇异值分解(SVD)用于从包含矢量化数据的矩阵中提取最主导的特征。虽然SVD对可以适当表示为矩阵的数据非常有用,但是矢量化步骤导致我们丢失了数据内在的高维关系。为了便于高效的多维特征提取,我们利用了使用基于投影的分类算法,使用T-SVDM,矩阵SVD的张量模拟。我们的作品扩展了T-SVDM框架和分类算法,最初提出了所有数量的尺寸。然后,我们使用Starplus FMRI DataSet将此算法应用于分类任务。我们的数值实验表明,基于张于FMRI分类的卓越方法,而不是基于最佳的等效矩阵的方法。我们的结果说明了我们选择的张量框架的优势,提供了对参数的有益选择的洞察力,并且可以进一步开发用于分类更复杂的成像数据。我们在https://github.com/elizabethnewman/tensor-fmri提供我们的Python实现。
translated by 谷歌翻译
在机器学习(ML)算法自动化或提供有关人员的后果决策的环境中,通常会激励个人决策主题以战略性地修改其可观察的属性以获得更有利的预测。结果,对评估规则进行培训的分布可能与其部署中运营的规则不同。尽管这种分配的变化通常可以阻碍准确的预测,但我们的工作确定了由于战略反应而引起的转变相关的独特机会:我们表明我们可以有效地利用战略反应来恢复可观察到的特征与我们希望预测的可观察到的因果关系,即使在没有观察到的混杂变量的情况下。具体而言,我们的工作通过观察到部署模型的序列可以看作是影响代理可观察到的特征但不会直接影响其结果的工具,从而建立了对ML模型的战略响应与仪器变量(IV)回归之间的新颖联系。我们表明,我们的因果恢复方法可用于改善几个重要标准的决策:个人公平,代理结果和预测风险。特别是,我们表明,如果决策主体在修改非毒物属性的能力上有所不同,那么与因果系数偏离的任何决策规则都可能导致(潜在无限)个体级别的不公平性。
translated by 谷歌翻译
我们提出并通过在图像和文本的本地特征之间最大化互信息来提出并展示表示学习方法。这种方法的目标是通过利用描述图像中发现的自由文本中包含的丰富信息来学习有用的图像表示。我们的方法通过鼓励产生的表示展示了高局部互信息来训练图像和文本编码器。我们利用神经网络鉴别器的互信息估算的最新进展。我们认为,本地互信息的总和通常是全球相互信息的较低限制。我们在下游图像分类任务中的实验结果展示了使用本地特征进行图像文本表示学习的优势。
translated by 谷歌翻译