当前的融合定位系统主要基于过滤算法,例如卡尔曼过滤或粒子过滤。但是,实际应用方案的系统复杂性通常很高,例如行人惯性导航系统中的噪声建模或指纹匹配和定位算法中的环境噪声建模。为了解决这个问题,本文提出了一个基于深度学习的融合定位系统,并提出了一种转移学习策略,以改善具有不同分布的样本的神经网络模型的性能。结果表明,在整个地板方案中,融合网络的平均定位精度为0.506米。转移学习的实验结果表明,惯性导航定位步骤大小和不同行人的旋转角的估计精度可以平均提高53.3%,可以将不同设备的蓝牙定位精度提高33.4%,并且融合可以提高。可以提高31.6%。
translated by 谷歌翻译
从X射线冠状动脉造影(XCA)图像序列中提取对比度的血管对于直觉诊断和治疗具有重要的临床意义。在这项研究中,XCA图像序列O被认为是三维张量输入,血管层H是稀疏张量,而背景层B是低级别张量。使用张量核标准(TNN)最小化,提出了一种基于张量的强稳定主成分分析(TRPCA)的新型血管层提取方法。此外,考虑了血管的不规则运动和周围无关组织的动态干扰,引入了总变化(TV)正规化时空约束,以分离动态背景E。 - 阶段区域生长(TSRG)方法用于血管增强和分割。全局阈值分割用作获得主分支的预处理,并使用ra样特征(RLF)滤波器来增强和连接破碎的小段,最终的容器掩模是通过结合两个中间结果来构建的。我们评估了TV-TRPCA算法的前景提取的可见性以及TSRG算法在真实临床XCA图像序列和第三方数据库上的血管分割的准确性。定性和定量结果都验证了所提出的方法比现有的最新方法的优越性。
translated by 谷歌翻译
使用图神经网络(GNN)的节点分类已在各种现实世界中广泛应用。但是,近年来,有令人信服的证据表明,基于GNN的淋巴结分类的性能可能会因拓扑扰动(例如随机连接或对抗性攻击)而大大恶化。已经提出了各种解决方案,例如拓扑降解方法和机理设计方法,以开发出强大的GNN基于GNN的节点分类器,但是这些作品都无法完全解决与拓扑扰动有关的问题。最近,提出了贝叶斯标签过渡模型来解决此问题,但其缓慢的收敛性可能导致劣等性能。在这项工作中,我们提出了一种新的标签推理模型,即林德(Lindt),该模型同时整合了贝叶斯标签过渡和基于拓扑的标签传播,以改善GNN对拓扑扰动的鲁棒性。 Lindt优于现有标签过渡方法,因为它通过利用基于邻里的标签传播来改善不确定节点的标签预测,从而可以更好地收敛标签推理。此外,Lindt采用不对称的Dirichlet分布作为先验,这也有助于改善标签推理。在五个图数据集上进行的广泛实验证明了Lindt在拓扑扰动的三种情况下对基于GNN的节点分类的优越性。
translated by 谷歌翻译
仅国家模仿学习的最新进展将模仿学习的适用性扩展到现实世界中的范围,从而减轻了观察专家行动的需求。但是,现有的解决方案只学会从数据中提取州对行动映射策略,而无需考虑专家如何计划到目标。这阻碍了利用示威游行并限制政策的灵活性的能力。在本文中,我们介绍了解耦政策优化(DEPO),该策略优化(DEPO)明确将策略脱离为高级状态计划者和逆动力学模型。借助嵌入式的脱钩策略梯度和生成对抗训练,DEPO可以将知识转移到不同的动作空间或状态过渡动态,并可以将规划师推广到无示威的状态区域。我们的深入实验分析表明,DEPO在学习最佳模仿性能的同时学习通用目标状态计划者的有效性。我们证明了DEPO通过预训练跨任务转移的吸引力,以及与各种技能共同培训的潜力。
translated by 谷歌翻译
心肌活力的评估对于患有心肌梗塞的患者的诊断和治疗管理是必不可少的,并且心肌病理学的分类是本评估的关键。这项工作定义了医学图像分析的新任务,即进行心肌病理分割(MYOPS)结合三个序列的心脏磁共振(CMR)图像,该图像首次与Mycai 2020一起在Myops挑战中提出的。挑战提供了45个配对和预对准的CMR图像,允许算法将互补信息与三个CMR序列组合到病理分割。在本文中,我们提供了挑战的详细信息,从十五个参与者的作品调查,并根据五个方面解释他们的方法,即预处理,数据增强,学习策略,模型架构和后处理。此外,我们对不同因素的结果分析了结果,以检查关键障碍和探索解决方案的潜力,以及为未来的研究提供基准。我们得出结论,虽然报告了有前途的结果,但研究仍处于早期阶段,在成功应用于诊所之前需要更深入的探索。请注意,MyOPS数据和评估工具继续通过其主页(www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20 /)注册注册。
translated by 谷歌翻译
深度估计是近年来全景图像3D重建的关键步骤。 Panorama图像保持完整的空间信息,但与互联的投影引入失真。在本文中,我们提出了一种基于自适应组合扩张的卷积的ACDNet,以预测单眼地全景图像的密集深度图。具体地,我们将卷积核与不同的扩张相结合,以延长昼夜投影中的接收领域。同时,我们介绍了一个自适应渠道 - 明智的融合模块,总结了特征图,并在频道的接收领域中获得不同的关注区域。由于利用通道的注意力构建自适应通道 - 明智融合模块,网络可以有效地捕获和利用跨通道上下文信息。最后,我们对三个数据集(虚拟和现实世界)进行深度估计实验,实验结果表明,我们所提出的ACDNET基本上优于当前的最先进(SOTA)方法。我们的代码和模型参数在https://github.com/zcq15/acdnet中访问。
translated by 谷歌翻译
当代视觉标题模型通常是幻觉的对象,其实际上并不是一种场景,因为目视错误分类或过度依赖导致视觉信息与目标词汇词之间的语义不一致。最常见的方式是鼓励标题模型将生成的对象字或短语动态链接到图像的适当区域,即接地图像标题(GIC)。然而,GIC利用辅助任务(接地对象),这些任务(接地对象)没有解决对象幻觉的关键问题,即语义不一致。在本文中,我们对上面的问题进行了一种小说 - 利用视觉和语言模式之间的语义一致性。具体而言,我们提出了与GIC的共识RRAPH表示学习框架(CGRL),其纳入接地标题管道的共识表示。通过将可视图(例如,场景图)对准到图表中的节点和边的语言图来学习共识。通过对齐的共识,标题模型可以捕获正确的语言特征和视觉相关性,然后进一步接地适当的图像区域。我们验证了我们模型的有效性,对象幻觉(-9%主席)在Flickr30k实体数据集中显着下降。此外,我们的CGR还通过多种自动度量和人体评估评估,结果表明,该方法可以同时提高图像标题(+2.9苹果酒)和接地的性能(+2.3 f1loc)。
translated by 谷歌翻译
接地视频描述(GVD)促使标题模型动态地参加适当的视频区域(例如,对象)并生成描述。这样的设置可以帮助解释标题模型的决策,并防止模型在其描述中幻觉的对象词。然而,这种设计主要侧重于对象词生成,因此可能忽略细粒度信息并遭受缺失的视觉概念。此外,关系词(例如,“左转或右”)是通常的时空推断结果,即,这些单词不能在某些空间区域接地。为了解决上述限制,我们设计了GVD的新型关系图学习框架,其中旨在探索细粒度的视觉概念。此外,精细图可以被视为关系归纳知识,以帮助标题模型选择所需的相关信息来生成正确的单词。我们通过自动指标和人类评估验证我们模型的有效性,结果表明,我们的方法可以产生更细粒度和准确的描述,并解决了物体幻觉的问题。
translated by 谷歌翻译
Spatially varying spectral modulation can be implemented using a liquid crystal spatial light modulator (SLM) since it provides an array of liquid crystal cells, each of which can be purposed to act as a programmable spectral filter array. However, such an optical setup suffers from strong optical aberrations due to the unintended phase modulation, precluding spectral modulation at high spatial resolutions. In this work, we propose a novel computational approach for the practical implementation of phase SLMs for implementing spatially varying spectral filters. We provide a careful and systematic analysis of the aberrations arising out of phase SLMs for the purposes of spatially varying spectral modulation. The analysis naturally leads us to a set of "good patterns" that minimize the optical aberrations. We then train a deep network that overcomes any residual aberrations, thereby achieving ideal spectral modulation at high spatial resolution. We show a number of unique operating points with our prototype including dynamic spectral filtering, material classification, and single- and multi-image hyperspectral imaging.
translated by 谷歌翻译
我们考虑使用系统的光学成像过程与卷积神经网络(CNN)来解决快照高光谱成像重建问题,其使用双相机系统以压缩方式捕获三维高光谱图像(HSIS)。近年来已经开发了使用CNN的各种方法来重建HSI,但大多数监督的深度学习方法旨在符合捕获的压缩图像和标准HSI之间的蛮力映射关系。因此,当观察数据偏离训练数据时,学习的映射将无效。特别是,我们通常在现实方案中没有地面真相。在本文中,我们提出了一个自我监督的双摄像机设备,具有未经训练的物理信息的CNNS框架。广泛的模拟和实验结果表明,我们没有培训的方法可以适应具有良好性能的广泛成像环境。此外,与基于培训的方法相比,我们的系统可以在现实方案中不断微调和自我改善。
translated by 谷歌翻译