随着机器学习(ML)系统变得越来越普遍,有必要在部署之前审核这些系统的偏见。最近的研究开发了算法,以有效地以可解释的,表现不佳的数据(或切片)的形式有效地识别相互偏见。但是,这些解决方案及其见解是有限的,而没有用于视觉理解和与这些算法结果相互作用的工具。我们提出了Visual Auditor,这是一种交互式可视化工具,用于审核和汇总模型偏差。视觉审核员通过提供可解释的交叉偏差概述(检查由多个功能定义的人群,有问题的数据切片之间的关系以及在模型中表现不佳和表现表现不佳之间的比较之间存在的详细信息)来协助模型验证。我们的开源工具直接在计算笔记本和Web浏览器中运行,使模型审核可访问并易于集成到当前的ML开发工作流中。一项与Fiddler AI的域专家合作的观察用户研究强调,我们的工具可以帮助ML实践者识别和理解模型偏见。
translated by 谷歌翻译
Machine learning has emerged recently as a powerful tool for predicting properties of quantum many-body systems. For many ground states of gapped Hamiltonians, generative models can learn from measurements of a single quantum state to reconstruct the state accurately enough to predict local observables. Alternatively, kernel methods can predict local observables by learning from measurements on different but related states. In this work, we combine the benefits of both approaches and propose the use of conditional generative models to simultaneously represent a family of states, by learning shared structures of different quantum states from measurements. The trained model allows us to predict arbitrary local properties of ground states, even for states not present in the training data, and without necessitating further training for new observables. We numerically validate our approach (with simulations of up to 45 qubits) for two quantum many-body problems, 2D random Heisenberg models and Rydberg atom systems.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
数据是现代机器学习系统的命脉,包括音乐信息检索中的命脉(MIR)。但是,MIR长期以来一直被小型数据集和不可靠的标签所困扰。在这项工作中,我们建议使用生成建模打破这种瓶颈。通过使用室内合奏的结构化合成模型(在URMP上训练的MIDI-DDSP)的结构化合成模型,通过管道说明(在巴赫合唱上训练的椰子)模型,我们演示了一个能够生成无限量的逼真的合唱音乐的系统,其中包括丰富的结合音乐,包括混合,包括混合,,,包括混合,茎,MIDI,笔记级性能属性(Staccato,Vibrato等),甚至是细粒的合成参数(音高,振幅等)。我们称此系统为室内集合发生器(CEG),并使用它来生成来自四个不同腔室合奏(cocochorales)的大型合唱数据集。我们证明,使用我们的方法生成的数据改善了音乐转录和源分离的最新模型,并且我们均发布了系统和数据集作为MIR社区未来工作的开源基础。
translated by 谷歌翻译
机器学习潜力是分子模拟的重要工具,但是由于缺乏高质量数据集来训练它们的发展,它们的开发阻碍了它们。我们描述了Spice数据集,这是一种新的量子化学数据集,用于训练与模拟与蛋白质相互作用的药物样的小分子相关的潜在。它包含超过110万个小分子,二聚体,二肽和溶剂化氨基酸的构象。它包括15个元素,带电和未充电的分子以及广泛的共价和非共价相互作用。它提供了在{\ omega} b97m-d3(bj)/def2-tzVPPD理论水平以及其他有用的数量(例如多极矩和键阶)上计算出的力和能量。我们在其上训练一组机器学习潜力,并证明它们可以在化学空间的广泛区域中实现化学精度。它可以作为创建可转移的,准备使用潜在功能用于分子模拟的宝贵资源。
translated by 谷歌翻译
基于自我监督的基于学习的预科可以使用小标签的数据集开发可靠和广义的深度学习模型,从而减轻了标签生成的负担。本文旨在评估基于CL的预处理对可转介的性能与非转介糖尿病性视网膜病(DR)分类的影响。我们已经开发了一个基于CL的框架,具有神经风格转移(NST)增强,以生成具有更好表示和初始化的模型,以检测颜色底面图像中的DR。我们将CL预估计的模型性能与用成像网权重预测的两个最先进的基线模型进行了比较。我们通过减少标记的训练数据(降至10%)进一步研究模型性能,以测试使用小标签数据集训练模型的鲁棒性。该模型在EYEPACS数据集上进行了培训和验证,并根据芝加哥伊利诺伊大学(UIC)的临床数据进行了独立测试。与基线模型相比,我们的CL预处理的基础网模型具有更高的AUC(CI)值(0.91(0.898至0.930),在UIC数据上为0.80(0.783至0.820)和0.83(0.783至0.820)(0.801至0.853)。在10%标记的培训数据时,在UIC数据集上测试时,基线模型中的FoldusNet AUC为0.81(0.78至0.84),比0.58(0.56至0.64)和0.63(0.56至0.64)和0.63(0.60至0.66)。基于CL的NST预处理可显着提高DL分类性能,帮助模型良好(可从Eyepacs转移到UIC数据),并允许使用小的带注释的数据集进行培训,从而减少临床医生的地面真相注释负担。
translated by 谷歌翻译
研究过程自动化 - 对科学仪器,计算机,数据存储和其他资源的可靠,高效和可重复执行的可靠,高效和可重复执行,这是现代科学的基本要素。我们在此处报告Globus研究数据管理平台内的新服务,该服务可以将各种研究过程的规范作为可重复使用的动作集,流量以及在异质研究环境中执行此类流动的集合。为了以广泛的空间范围(例如,从科学仪器到远程数据中心)和时间范围(从几秒钟到几周),这些Globus自动化服务功能:1)云托管以可靠地执行长期持久的流量,尽管零星的失败,但这些Globus自动化服务功能:1) ; 2)声明性符号和可扩展的异步行动提供商API,用于定义和执行涉及任意资源的各种行动和流动规范; 3)授权授权机制,用于安全调用动作。这些服务允许研究人员将广泛的研究任务的管理外包和自动化为可靠,可扩展和安全的云平台。我们向Globus自动化服务提供用例
translated by 谷歌翻译
我们介绍了Gaudi,Gaudi是一种生成模型,能够捕获可以从移动的相机中沉浸式的复杂和现实3D场景的分布。我们通过一种可扩展而强大的方法解决了这个具有挑战性的问题,我们首先优化了散布辐射场和相机姿势的潜在表示。然后,该潜在表示将学习一个生成模型,该模型可以使3D场景的无条件生成和条件生成。我们的模型概括了以前的作品,该作品通过删除可以在样本中共享相机姿势分布的假设来关注单个对象。我们表明,高迪(Gaudi)在多个数据集的无条件生成设置中获得了最先进的性能,并允许有条件地生成3D场景给定的调理变量,例如稀疏图像观测值或描述场景的文本。
translated by 谷歌翻译
对训练有素的ML模型进行连续监控,以确定其预测何时应该和不应信任的预测对于他们的安全部署至关重要。这样的框架应该是高性能,可解释的,事后和可行的。我们提出了信任范围,这是连续模型监视的“不信任”评分框架。我们使用一系列潜在空间嵌入序列评估每个输入样本模型预测的可信度。具体而言,(a)我们的潜在空间不信任得分估计了潜在空间中的距离指标(马哈拉氏症距离)和相似性指标(余弦相似性),并且(b)我们的顺序不信任得分决定了过去输入顺序的相关性偏差非参数基于滑动窗口的表示,用于可操作的连续监视。我们通过两个下游任务评估信任量:(1)分布转移的输入检测和(2)数据漂移检测,跨越不同的域 - 使用公共数据集的音频和视觉,并进一步基准了我们在具有挑战性的现实,现实世界中的脑电图(EEG)(EEG)(EEG) )数据集用于癫痫发作。我们的潜在空间不信任得分以84.1(视觉),73.9(音频),77.1(临床脑电图)的AUROCs获得最新的结果,优于10分以上。我们暴露了对输入语义内容不敏感的流行基线中的关键故障,使它们不适合现实世界模型监视。我们表明,我们的顺序不信任得分达到了高漂移检测率:超过90%的流显示所有域的误差<20%。通过广泛的定性和定量评估,我们表明我们的不信任分数更强大,并为轻松采用实践提供了解释性。
translated by 谷歌翻译
我们从一组稀疏的光谱时间序列中构建了一个物理参数化的概率自动编码器(PAE),以学习IA型超新星(SNE IA)的内在多样性。 PAE是一个两阶段的生成模型,由自动编码器(AE)组成,该模型在使用归一化流(NF)训练后概率地解释。我们证明,PAE学习了一个低维的潜在空间,该空间可捕获人口内存在的非线性特征范围,并且可以直接从数据直接从数据中准确地对整个波长和观察时间进行精确模拟SNE IA的光谱演化。通过引入相关性惩罚项和多阶段训练设置以及我们的物理参数化网络,我们表明可以在训练期间分离内在和外在的可变性模式,从而消除了需要进行额外标准化的其他模型。然后,我们在SNE IA的许多下游任务中使用PAE进行越来越精确的宇宙学分析,包括自动检测SN Outliers,与数据分布一致的样本的产生以及在存在噪音和不完整数据的情况下解决逆问题限制宇宙距离测量。我们发现,与以前的研究相一致的最佳固有模型参数数量似乎是三个,并表明我们可以用$ 0.091 \ pm 0.010 $ mag标准化SNE IA的测试样本,该样本对应于$ 0.074 \ pm。 0.010 $ mag如果删除了特殊的速度贡献。训练有素的模型和代码在\ href {https://github.com/georgestein/supaernova} {github.com/georgestein/supaernova}上发布
translated by 谷歌翻译