Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
Document images are a ubiquitous source of data where the text is organized in a complex hierarchical structure ranging from fine granularity (e.g., words), medium granularity (e.g., regions such as paragraphs or figures), to coarse granularity (e.g., the whole page). The spatial hierarchical relationships between content at different levels of granularity are crucial for document image understanding tasks. Existing methods learn features from either word-level or region-level but fail to consider both simultaneously. Word-level models are restricted by the fact that they originate from pure-text language models, which only encode the word-level context. In contrast, region-level models attempt to encode regions corresponding to paragraphs or text blocks into a single embedding, but they perform worse with additional word-level features. To deal with these issues, we propose MGDoc, a new multi-modal multi-granular pre-training framework that encodes page-level, region-level, and word-level information at the same time. MGDoc uses a unified text-visual encoder to obtain multi-modal features across different granularities, which makes it possible to project the multi-granular features into the same hyperspace. To model the region-word correlation, we design a cross-granular attention mechanism and specific pre-training tasks for our model to reinforce the model of learning the hierarchy between regions and words. Experiments demonstrate that our proposed model can learn better features that perform well across granularities and lead to improvements in downstream tasks.
translated by 谷歌翻译
个性化的自然语言生成可解释的建议在证明为什么建议可能与用户的兴趣相匹配的原因中起着关键作用。现有模型通常通过软约束(例如〜方面计划)来控制发电过程。在有希望的同时,这些方法难以正确地生成特定的信息,这阻止了产生的解释内容丰富和多样化。在本文中,我们提出了UCEPIC,这是一个解释生成模型,该模型统一了可控个性化生成的方面计划和词汇约束。具体而言,我们首先通过提出的强大插入过程预先培训非人性化的文本生成器,以便模型能够生成包含词汇约束的句子。然后,我们演示了将方面计划和个性化引用纳入插入过程的方法,以获得个性化的解释。与先前由软限制控制的工作相比,UCEPIC结合了来自钥匙拼的特定信息,然后很大程度上提高了生成的解释的多样性和信息性。对RateBeer和Yelp的广泛实验表明,UCEPIC可以为建议产生高质量和不同的解释。
translated by 谷歌翻译
如何培训理想的老师进行知识蒸馏仍然是一个悬而未决的问题。人们普遍观察到,将教师最小化经验风险不一定会产生表现最好的学生,这表明教师网络培训中的共同实践与蒸馏目标之间的基本差异。为了填补这一空白,我们提出了一个新颖的以学生为导向的教师网络培训框架Soteacher,这是受到最新发现的启发,即学生的表现取决于教师近似培训样本的真正标签分布的能力。从理论上讲,我们确定(1)具有适当评分规则的经验风险最小化器,如果假设函数是局部lipschitz在训练样本周围连续的,则可以证明训练数据的真实标签分布; (2)当使用数据扩展进行培训时,需要一个额外的约束,使最小化器必须在同一培训输入的增强视图中产生一致的预测。鉴于我们的理论,Soteacher通过结合Lipschitz正则化和​​一致性正则化来翻新经验风险最小化。值得一提的是,Soteacher几乎适用于所有教师学生的建筑对,在教师的培训时不需要对学生的先验知识,并且几乎没有任何计算开销。两个基准数据集的实验证实,Soteacher可以在各种知识蒸馏算法和教师成对的各种知识蒸馏算法中显着和一致地提高学生的绩效。
translated by 谷歌翻译
Existing measures and representations for trajectories have two longstanding fundamental shortcomings, i.e., they are computationally expensive and they can not guarantee the `uniqueness' property of a distance function: dist(X,Y) = 0 if and only if X=Y, where $X$ and $Y$ are two trajectories. This paper proposes a simple yet powerful way to represent trajectories and measure the similarity between two trajectories using a distributional kernel to address these shortcomings. It is a principled approach based on kernel mean embedding which has a strong theoretical underpinning. It has three distinctive features in comparison with existing approaches. (1) A distributional kernel is used for the very first time for trajectory representation and similarity measurement. (2) It does not rely on point-to-point distances which are used in most existing distances for trajectories. (3) It requires no learning, unlike existing learning and deep learning approaches. We show the generality of this new approach in three applications: (a) trajectory anomaly detection, (b) anomalous sub-trajectory detection, and (c) trajectory pattern mining. We identify that the distributional kernel has (i) a unique data-dependent property and the above uniqueness property which are the key factors that lead to its superior task-specific performance; and (ii) runtime orders of magnitude faster than existing distance measures.
translated by 谷歌翻译
Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.
translated by 谷歌翻译
Autonomous robotic surgery has advanced significantly based on analysis of visual and temporal cues in surgical workflow, but relational cues from domain knowledge remain under investigation. Complex relations in surgical annotations can be divided into intra- and inter-relations, both valuable to autonomous systems to comprehend surgical workflows. Intra- and inter-relations describe the relevance of various categories within a particular annotation type and the relevance of different annotation types, respectively. This paper aims to systematically investigate the importance of relational cues in surgery. First, we contribute the RLLS12M dataset, a large-scale collection of robotic left lateral sectionectomy (RLLS), by curating 50 videos of 50 patients operated by 5 surgeons and annotating a hierarchical workflow, which consists of 3 inter- and 6 intra-relations, 6 steps, 15 tasks, and 38 activities represented as the triplet of 11 instruments, 8 actions, and 16 objects, totaling 2,113,510 video frames and 12,681,060 annotation entities. Correspondingly, we propose a multi-relation purification hybrid network (MURPHY), which aptly incorporates novel relation modules to augment the feature representation by purifying relational features using the intra- and inter-relations embodied in annotations. The intra-relation module leverages a R-GCN to implant visual features in different graph relations, which are aggregated using a targeted relation purification with affinity information measuring label consistency and feature similarity. The inter-relation module is motivated by attention mechanisms to regularize the influence of relational features based on the hierarchy of annotation types from the domain knowledge. Extensive experimental results on the curated RLLS dataset confirm the effectiveness of our approach, demonstrating that relations matter in surgical workflow analysis.
translated by 谷歌翻译
Deep learning-based methods have achieved significant performance for image defogging. However, existing methods are mainly developed for land scenes and perform poorly when dealing with overwater foggy images, since overwater scenes typically contain large expanses of sky and water. In this work, we propose a Prior map Guided CycleGAN (PG-CycleGAN) for defogging of images with overwater scenes. To promote the recovery of the objects on water in the image, two loss functions are exploited for the network where a prior map is designed to invert the dark channel and the min-max normalization is used to suppress the sky and emphasize objects. However, due to the unpaired training set, the network may learn an under-constrained domain mapping from foggy to fog-free image, leading to artifacts and loss of details. Thus, we propose an intuitive Upscaling Inception Module (UIM) and a Long-range Residual Coarse-to-fine framework (LRC) to mitigate this issue. Extensive experiments on qualitative and quantitative comparisons demonstrate that the proposed method outperforms the state-of-the-art supervised, semi-supervised, and unsupervised defogging approaches.
translated by 谷歌翻译
Code generation models have achieved impressive performance. However, they tend to be brittle as slight edits to a prompt could lead to very different generations; these robustness properties, critical for user experience when deployed in real-life applications, are not well understood. Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation. In this paper, we propose ReCode, a comprehensive robustness evaluation benchmark for code generation models. We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format. They are carefully designed to be natural in real-life coding practice, preserve the original semantic meaning, and thus provide multifaceted assessments of a model's robustness performance. With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt. In addition, we define robustness metrics for code generation models considering the worst-case behavior under each type of perturbation, taking advantage of the fact that executing the generated code can serve as objective evaluation. We demonstrate ReCode on SOTA models using HumanEval, MBPP, as well as function completion tasks derived from them. Interesting observations include: better robustness for CodeGen over InCoder and GPT-J; models are most sensitive to syntax perturbations; more challenging robustness evaluation on MBPP over HumanEval.
translated by 谷歌翻译
Machine Translation Quality Estimation (QE) is the task of evaluating translation output in the absence of human-written references. Due to the scarcity of human-labeled QE data, previous works attempted to utilize the abundant unlabeled parallel corpora to produce additional training data with pseudo labels. In this paper, we demonstrate a significant gap between parallel data and real QE data: for QE data, it is strictly guaranteed that the source side is original texts and the target side is translated (namely translationese). However, for parallel data, it is indiscriminate and the translationese may occur on either source or target side. We compare the impact of parallel data with different translation directions in QE data augmentation, and find that using the source-original part of parallel corpus consistently outperforms its target-original counterpart. Moreover, since the WMT corpus lacks direction information for each parallel sentence, we train a classifier to distinguish source- and target-original bitext, and carry out an analysis of their difference in both style and domain. Together, these findings suggest using source-original parallel data for QE data augmentation, which brings a relative improvement of up to 4.0% and 6.4% compared to undifferentiated data on sentence- and word-level QE tasks respectively.
translated by 谷歌翻译