The combination of transformers and masked image modeling (MIM) pre-training framework has shown great potential in various vision tasks. However, the pre-training computational budget is too heavy and withholds the MIM from becoming a practical training paradigm. This paper presents FastMIM, a simple and generic framework for expediting masked image modeling with the following two steps: (i) pre-training vision backbones with low-resolution input images; and (ii) reconstructing Histograms of Oriented Gradients (HOG) feature instead of original RGB values of the input images. In addition, we propose FastMIM-P to progressively enlarge the input resolution during pre-training stage to further enhance the transfer results of models with high capacity. We point out that: (i) a wide range of input resolutions in pre-training phase can lead to similar performances in fine-tuning phase and downstream tasks such as detection and segmentation; (ii) the shallow layers of encoder are more important during pre-training and discarding last several layers can speed up the training stage with no harm to fine-tuning performance; (iii) the decoder should match the size of selected network; and (iv) HOG is more stable than RGB values when resolution transfers;. Equipped with FastMIM, all kinds of vision backbones can be pre-trained in an efficient way. For example, we can achieve 83.8%/84.1% top-1 accuracy on ImageNet-1K with ViT-B/Swin-B as backbones. Compared to previous relevant approaches, we can achieve comparable or better top-1 accuracy while accelerate the training procedure by $\sim$5$\times$. Code can be found in https://github.com/ggjy/FastMIM.pytorch.
translated by 谷歌翻译
知识图(kg)以其大规模和知识推断能力而闻名,但也因与之相关的不完整而臭名昭著。由于关系长尾分布在公斤中的长尾分布,因此很少有人提出完成kg的完成,以减轻不完整和扩大kg的覆盖范围。它旨在对涉及新关系的三胞胎进行预测,当时仅提供少量培训三胞胎作为参考。以前的方法主要集中在设计本地邻居聚合器以学习实体级信息和/或在三胞胎级别实现顺序依赖性假设以学习元关系信息。但是,对于学习几乎没有射击关系的元表示,很大程度上忽略了宝贵的成对三重级交互和上下文级别的关系信息。在本文中,我们提出了一种分层的关系学习方法(雇用),以完成几次kg完成。通过共同捕获三个级别的关系信息(实体级别,三胞胎级别和上下文级别),雇用可以有效地学习和完善几乎没有射击关系的元表示,因此可以很好地推广到新的看不见的关系。在两个基准数据集上进行的广泛实验验证了雇用与其他最先进方法的优势。
translated by 谷歌翻译
我们建议探索一个称为视听分割(AVS)的新问题,其中的目标是输出在图像帧时产生声音的对象的像素级映射。为了促进这项研究,我们构建了第一个视频分割基准(AVSBENCH),为声音视频中的声音对象提供像素的注释。使用此基准测试了两个设置:1)具有单个声源的半监督音频分割和2)完全监督的音频段段,并带有多个声源。为了解决AVS问题,我们提出了一种新颖的方法,该方法使用时间像素的视听相互作用模块注入音频语义作为视觉分割过程的指导。我们还设计正规化损失,以鼓励训练期间的视听映射。 AVSBench上的定量和定性实验将我们的方法与相关任务中的几种现有方法进行了比较,这表明所提出的方法有望在音频和像素视觉语义之间建立桥梁。代码可从https://github.com/opennlplab/avsbench获得。
translated by 谷歌翻译
网络架构在基于深度学习的计算机视觉系统中起关键作用。广泛使用的卷积神经网络和变压器将图像视为网格或序列结构,该网格或序列结构并非灵活以捕获不规则和复杂的对象。在本文中,我们建议将图像表示为图形结构,并引入新的视觉GNN(VIG)体系结构,以提取视觉任务的图形级特征。我们首先将图像拆分为许多被视为节点的补丁,然后通过连接最近的邻居来构造图形。根据图像的图表表示,我们构建了VIG模型以在所有节点之间转换和交换信息。 VIG由两个基本模块组成:用于汇总和更新图形信息的图形卷积的图形模块,以及带有两个线性层的FFN模块用于节点特征转换。 VIG的各向同性和金字塔体系结构均具有不同的型号。关于图像识别和对象检测任务的广泛实验证明了我们的VIG架构的优势。我们希望GNN关于一般视觉任务的开创性研究将为未来的研究提供有用的灵感和经验。 pytorch代码可在https://github.com/huawei-noah/effficity-ai-backbones上获得,Mindspore代码可在https://gitee.com/mindspore/models上获得。
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
变压器网络对计算机视觉任务取得了很大的进步。变压器 - 变压器(TNT)架构利用内部变压器和外部变压器提取本地和全局表示。在这项工作中,我们通过引入两个先进的设计:1)金字塔架构和2)卷积阀。通过建立分层表示,新的“金字塔”显着改善了原始TNT。Pyramidtnt比以前的最先进的视觉变压器(如Swin Transformer)实现更好的表演。我们希望这一新基线能够有助于视觉变压器的进一步研究和应用。代码将在https://github.com/huawei-noah/cv-backbones/tree/master/tnt_pytorch获得。
translated by 谷歌翻译
与传统的卷积神经网络(CNN)和视觉变压器不同,多层默认(MLP)是一种新的视觉模型,具有极其简单的架构,其仅由完全连接的层堆叠。 Vision MLP的输入图像通常被分成多个令牌(补丁),而现有的MLP模型直接用固定权重聚合它们,忽略来自不同图像的令牌的变化语义信息。为了动态聚合令牌,我们建议将每个令牌代表为具有两个部分,幅度和相位的波函数。幅度是原始特征,并且相位项是根据输入图像的语义内容改变的复值。介绍相位项可以动态调制MLP中令牌和固定权重之间的关系。基于波浪状令牌表示,我们建立了一种用于视觉任务的新型波-MLP架构。广泛的实验表明,所提出的波-MLP优于各种视觉任务的最先进的MLP架构,例如图像分类,对象检测和语义分割。
translated by 谷歌翻译
先前的视觉MLP,如MLP-MILER和RESMLP接受线性扁平的图像贴片作为输入,使其对不同的输入大小和难以捕获空间信息。这种方法隐瞒了MLP与基于变压器的对应物相比,并防止它们成为计算机视觉的一般骨干。本文介绍了Hire-MLP,通过\ TextBF {Hi} reachical \ TextBF {Re}排列,这是一个简单而竞争的愿景MLP架构,其中包含两个重排级别。具体地,提出内部区域重新排列以捕获空间区域内的局部信息,并且提出横区域重新排列以使不同区域之间的信息通信能够通过沿空间方向循环地转换所有令牌来实现不同区域之间的信息通信。广泛的实验证明了Hire-MLP作为各种视觉任务的多功能骨干的有效性。特别是,Hire-MLP在图像分类,对象检测和语义分割任务上实现竞争结果,例如,在Imagenet上的83.8%的前1个精度,51.7%盒AP和Coco Val2017上的44.8%掩模AP和Ade20k上的49.9%Miou ,超越以前的基于变压器和基于MLP的型号,具有更好的折衷以获得准确性和吞吐量。代码可在https://github.com/ggjy/hire-wave-mlp.pytorch获得。
translated by 谷歌翻译
视觉变压器由于能够捕获图像中的长期依赖性的能力而成功地应用于图像识别任务。但是,变压器与现有卷积神经网络(CNN)之间的性能和计算成本仍然存在差距。在本文中,我们旨在解决此问题,并开发一个网络,该网络不仅可以超越规范变压器,而且可以超越高性能卷积模型。我们通过利用变压器来捕获长期依赖性和CNN来建模本地特征,从而提出了一个新的基于变压器的混合网络。此外,我们将其扩展为获得一个称为CMT的模型家族,比以前的基于卷积和基于变压器的模型获得了更好的准确性和效率。特别是,我们的CMT-S在ImageNet上获得了83.5%的TOP-1精度,而在拖鞋上的拖曳率分别比现有的DEIT和EficitiveNet小14倍和2倍。拟议的CMT-S还可以很好地概括CIFAR10(99.2%),CIFAR100(91.7%),花(98.7%)以及其他具有挑战性的视觉数据集,例如可可(44.3%地图),计算成本较小。
translated by 谷歌翻译
Transformer is a new kind of neural architecture which encodes the input data as powerful features via the attention mechanism. Basically, the visual transformers first divide the input images into several local patches and then calculate both representations and their relationship. Since natural images are of high complexity with abundant detail and color information, the granularity of the patch dividing is not fine enough for excavating features of objects in different scales and locations. In this paper, we point out that the attention inside these local patches are also essential for building visual transformers with high performance and we explore a new architecture, namely, Transformer iN Transformer (TNT). Specifically, we regard the local patches (e.g., 16×16) as "visual sentences" and present to further divide them into smaller patches (e.g., 4×4) as "visual words". The attention of each word will be calculated with other words in the given visual sentence with negligible computational costs. Features of both words and sentences will be aggregated to enhance the representation ability. Experiments on several benchmarks demonstrate the effectiveness of the proposed TNT architecture, e.g., we achieve an 81.5% top-1 accuracy on the ImageNet, which is about 1.7% higher than that of the state-of-the-art visual transformer with similar computational cost.
translated by 谷歌翻译