Recent advances in generative adversarial networks (GANs) have demonstrated the capabilities of generating stunning photo-realistic portrait images. While some prior works have applied such image GANs to unconditional 2D portrait video generation and static 3D portrait synthesis, there are few works successfully extending GANs for generating 3D-aware portrait videos. In this work, we propose PV3D, the first generative framework that can synthesize multi-view consistent portrait videos. Specifically, our method extends the recent static 3D-aware image GAN to the video domain by generalizing the 3D implicit neural representation to model the spatio-temporal space. To introduce motion dynamics to the generation process, we develop a motion generator by stacking multiple motion layers to generate motion features via modulated convolution. To alleviate motion ambiguities caused by camera/human motions, we propose a simple yet effective camera condition strategy for PV3D, enabling both temporal and multi-view consistent video generation. Moreover, PV3D introduces two discriminators for regularizing the spatial and temporal domains to ensure the plausibility of the generated portrait videos. These elaborated designs enable PV3D to generate 3D-aware motion-plausible portrait videos with high-quality appearance and geometry, significantly outperforming prior works. As a result, PV3D is able to support many downstream applications such as animating static portraits and view-consistent video motion editing. Code and models will be released at https://showlab.github.io/pv3d.
translated by 谷歌翻译
Segmenting the fine structure of the mouse brain on magnetic resonance (MR) images is critical for delineating morphological regions, analyzing brain function, and understanding their relationships. Compared to a single MRI modality, multimodal MRI data provide complementary tissue features that can be exploited by deep learning models, resulting in better segmentation results. However, multimodal mouse brain MRI data is often lacking, making automatic segmentation of mouse brain fine structure a very challenging task. To address this issue, it is necessary to fuse multimodal MRI data to produce distinguished contrasts in different brain structures. Hence, we propose a novel disentangled and contrastive GAN-based framework, named MouseGAN++, to synthesize multiple MR modalities from single ones in a structure-preserving manner, thus improving the segmentation performance by imputing missing modalities and multi-modality fusion. Our results demonstrate that the translation performance of our method outperforms the state-of-the-art methods. Using the subsequently learned modality-invariant information as well as the modality-translated images, MouseGAN++ can segment fine brain structures with averaged dice coefficients of 90.0% (T2w) and 87.9% (T1w), respectively, achieving around +10% performance improvement compared to the state-of-the-art algorithms. Our results demonstrate that MouseGAN++, as a simultaneous image synthesis and segmentation method, can be used to fuse cross-modality information in an unpaired manner and yield more robust performance in the absence of multimodal data. We release our method as a mouse brain structural segmentation tool for free academic usage at https://github.com/yu02019.
translated by 谷歌翻译
人的大脑可以毫不费力地识别和定位对象,而基于激光雷达点云的当前3D对象检测方法仍然报告了较低的性能,以检测闭塞和远处的对象:点云的外观由于遮挡而变化很大,并且在沿线的固有差异沿点固有差异变化。传感器的距离。因此,设计功能表示对此类点云至关重要。受到人类联想识别的启发,我们提出了一个新颖的3D检测框架,该框架通过域的适应来使对象完整特征。我们弥合感知域之间的差距,其中特征是从具有亚最佳表示的真实场景中得出的,以及概念域,其中功能是从由不批准对象组成的增强场景中提取的,并具有丰富的详细信息。研究了一种可行的方法,可以在没有外部数据集的情况下构建概念场景。我们进一步介绍了一个基于注意力的重新加权模块,该模块可适应地增强更翔实区域的特征。该网络的功能增强能力将被利用,而无需在推理过程中引入额外的成本,这是各种3D检测框架中的插件。我们以准确性和速度都在Kitti 3D检测基准上实现了新的最先进性能。关于Nuscenes和Waymo数据集的实验也验证了我们方法的多功能性。
translated by 谷歌翻译
无监督的生成的虚拟人类具有各种外观和动画姿势对于创建3D人体化身和其他AR/VR应用非常重要。现有方法要么仅限于刚性对象建模,要么不生成,因此无法合成高质量的虚拟人类并使它们进行动画化。在这项工作中,我们提出了Avatargen,这是第一种不仅可以具有不同外观的非刚性人类产生的方法,而且还可以完全控制姿势和观点,同时仅需要2D图像进行训练。具体而言,它通过利用粗糙的人体模型作为代理将观察空间扭曲到规范空间下的标准头像,将最近的3D甘斯扩展到了人类的衣服。为了建模非刚性动力学,它引入了一个变形网络,以学习规范空间中的姿势依赖性变形。为了提高生成的人类化身的几何质量,它利用签名距离字段作为几何表示,从而可以从几何学学习上的身体模型中进行更直接的正则化。从这些设计中受益,我们的方法可以生成具有高质量外观和几何形状建模的动画人体化身,从而极大地表现了先前的3D gan。此外,它有能力用于许多应用,例如单视重构造,复活和文本引导的合成。代码和预培训模型将可用。
translated by 谷歌翻译
视觉表示学习是解决各种视力问题的关键。依靠开创性的网格结构先验,卷积神经网络(CNN)已成为大多数深视觉模型的事实上的标准架构。例如,经典的语义分割方法通常采用带有编码器编码器体系结构的完全横向卷积网络(FCN)。编码器逐渐减少了空间分辨率,并通过更大的接受场来学习更多抽象的视觉概念。由于上下文建模对于分割至关重要,因此最新的努力一直集中在通过扩张(即极度)卷积或插入注意力模块来增加接受场。但是,基于FCN的体系结构保持不变。在本文中,我们旨在通过将视觉表示学习作为序列到序列预测任务来提供替代观点。具体而言,我们部署纯变压器以将图像编码为一系列贴片,而无需局部卷积和分辨率减少。通过在变压器的每一层中建立的全球环境,可以学习更强大的视觉表示形式,以更好地解决视力任务。特别是,我们的细分模型(称为分割变压器(SETR))在ADE20K上擅长(50.28%MIOU,这是提交当天测试排行榜中的第一个位置),Pascal环境(55.83%MIOU),并在CityScapes上达到竞争成果。此外,我们制定了一个分层局部全球(HLG)变压器的家族,其特征是窗户内的本地关注和跨窗户的全球性专注于层次结构和金字塔架构。广泛的实验表明,我们的方法在各种视觉识别任务(例如,图像分类,对象检测和实例分割和语义分割)上实现了吸引力的性能。
translated by 谷歌翻译
宫颈异常细胞检测是一项具有挑战性的任务,因为异常细胞和正常细胞之间的形态差异通常是微妙的。为了确定宫颈细胞是正常还是异常,细胞病理学家总是将周围细胞作为参考,并进行仔细比较以鉴定其异常。为了模仿这些临床行为,我们建议探索上下文关系,以提高宫颈异常细胞检测的性能。具体而言,利用细胞和细胞到全球图像之间的上下文关系,以增强每个感兴趣区域(ROI)建议的特征。因此,开发了两个模块,称为ROI关系注意模块(RRAM)和全球ROI注意模块(GRAM),还研究了它们的组合策略。我们通过使用特征金字塔网络(FPN)使用单头或双头更快的R-CNN来设置强基础,并将我们的RRAM和革兰氏集整合到它们中以验证提出的模块的有效性。由40,000个细胞学图像组成的大宫颈细胞检测数据集进行的实验表明,RRAM和GRAM的引入都比基线方法获得了更好的平均精度(AP)。此外,当级联RRAM和GRAM时,我们的方法优于最先进的方法(SOTA)方法。此外,我们还显示了提出的功能增强方案可以促进图像级别和涂片级别的分类。代码和训练有素的模型可在https://github.com/cviu-csu/cr4cacd上公开获得。
translated by 谷歌翻译
基于分数的生成模型(SGM)最近已成为一类有希望的生成模型。但是,一个基本的限制是,由于需要许多顺序计算的迭代(例如,2000年),它们的推论非常慢。直观的加速方法是减少采样迭代,但是导致严重的性能降解。我们通过将扩散抽样过程视为大都市调整后的Langevin算法来研究这个问题,这有助于揭示根本的原因是条件不良的曲率。在这种见解下,我们提出了一种模型不足的预处理扩散采样(PDS)方法,该方法利用矩阵预处理以减轻上述问题。至关重要的是,在理论上证明了PDS可以收敛到SGM的原始目标分布,无需再进行重新训练。在三个图像数据集上进行了各种分辨率和多样性的广泛实验,可以验证PD始终加速现成的SGM,同时保持合成质量。特别是,PD在更具挑战性的高分辨率(1024x1024)图像生成上最多可加速29倍。
translated by 谷歌翻译
视觉变形金刚(VIT)通过贴片图像令牌化推动了各种视觉识别任务的最先进,然后是堆叠的自我注意操作。采用自我发场模块会导致计算和内存使用情况的二次复杂性。因此,已经在自然语言处理中进行了各种尝试以线性复杂性近似自我发挥计算的尝试。但是,这项工作的深入分析表明,它们在理论上是缺陷的,或者在经验上是无效的视觉识别。我们确定它们的局限性植根于在近似过程中保留软马克斯的自我注意力。具体而言,传统的自我注意力是通过使令状特征向量之间的缩放点产物标准化来计算的。保留SoftMax操作会挑战任何随后的线性化工作。在这个见解下,首次提出了无软磁变压器(缩写为软的变压器)。为了消除自我注意事项的软马克斯操作员,采用高斯内核函数来替代点产品相似性。这使完整的自发矩阵可以通过低级矩阵分解近似。我们近似的鲁棒性是通过使用牛顿 - 拉夫森方法来计算其摩尔 - 芬罗逆的。此外,在低级别的自我注意事项上引入了有效的对称归一化,以增强模型的推广性和可传递性。对Imagenet,Coco和ADE20K的广泛实验表明,我们的软可以显着提高现有VIT变体的计算效率。至关重要的是,具有线性复杂性,允许使用较长的令牌序列,从而使精度和复杂性之间的权衡较高。
translated by 谷歌翻译
从消息传递机制中受益,图形神经网络(GNN)在图形数据上的繁荣任务上已经成功。但是,最近的研究表明,攻击者可以通过恶意修改图形结构来灾难性地降低GNN的性能。解决此问题的直接解决方案是通过在两个末端节点的成对表示之间学习度量函数来建模边缘权重,该指标函数试图将低权重分配给对抗边缘。现有方法使用监督GNN学到的原始功能或表示形式来对边缘重量进行建模。但是,两种策略都面临着一些直接问题:原始特征不能代表节点的各种特性(例如结构信息),而受监督的GNN学到的表示可能会遭受分类器在中毒图上的差异性能。我们需要携带特征信息和尽可能糊状的结构信息并且对结构扰动不敏感的表示形式。为此,我们提出了一条名为stable的无监督管道,以优化图形结构。最后,我们将精心设计的图输入到下游分类器中。对于这一部分,我们设计了一个高级GCN,可显着增强香草GCN的鲁棒性,而不会增加时间复杂性。在四个现实世界图基准上进行的广泛实验表明,稳定的表现优于最先进的方法,并成功防御各种攻击。
translated by 谷歌翻译
基于分数的生成模型(SGM)最近已成为一类有希望的生成模型。关键思想是通过将高斯的噪音和梯度添加到高斯样品中,直到收敛到目标分布(又称扩散采样)来产生高质量的图像。但是,为了确保采样和发电质量中收敛的稳定性,此顺序抽样过程必须采用较小的步长和许多采样迭代(例如,2000年)。已经提出了几种加速方法,重点是低分辨率生成。在这项工作中,我们考虑使用SGM的高分辨率一代加速,这是一个更具挑战性,更重要的问题。从理论上讲,我们证明了这种缓慢的收敛弊端主要是由于目标分布的无知。此外,我们通过利用空间和频域中的结构先验来介绍一种新的目标分布意识采样(TDAS)方法。关于CIFAR-10,Celeba,LSUN和FFHQ数据集的广泛实验,验证了TDA可以始终加速最先进的SGM,尤其是在更具挑战性的高分辨率(1024x1024)图像生成任务上,最多可以维持18.4 x合成质量。随着采样迭代的较少,TDA仍然可以生成高质量的图像。相比之下,现有的方法会大大降解甚至完全失败
translated by 谷歌翻译