磁共振成像可以产生人体解剖和生理学的详细图像,可以帮助医生诊断和治疗肿瘤等病理。然而,MRI遭受了非常长的收购时间,使其易于患者运动伪影并限制其潜力以提供动态治疗。诸如并行成像和压缩感测的常规方法允许通过使用多个接收器线圈获取更少的MRI数据来改变MR图像来增加MRI采集速度。深度学习的最新进步与平行成像和压缩传感技术相结合,具有从高度加速的MRI数据产生高保真重建。在这项工作中,我们通过利用卷积复发网络的特性和展开算法来解决复发变分网络(RevurrentVarnet)的加速改变网络(RevurrentVarnet)的任务,提出了一种基于深入的深度学习的反问题解决者。 RevurrentVarnet由多个块组成,每个块都负责梯度下降优化算法的一个展开迭代,以解决逆问题。与传统方法相反,优化步骤在观察域($ k $ -space)而不是图像域中进行。每次反复出的Varnet块都会通过观察到的$ k $ -space,并由数据一致性术语和复制单元组成,它将作为输入的隐藏状态和前一个块的预测。我们所提出的方法实现了新的最新状态,定性和定量重建导致来自公共多通道脑数据集的5倍和10倍加速数据,优于以前的传统和基于深度学习的方法。我们将在公共存储库上释放所有型号代码和基线。
translated by 谷歌翻译
尽管几乎每种医学诊断和检查和检查应用中的广泛适应,但磁共振成像(MRI)仍然是慢的成像模态,其限制了其用于动态成像的用途。近年来,已利用平行成像(PI)和压缩传感(CS)加速MRI采集。在临床设置中,使用笛卡尔轨迹(例如直线采样)的扫描时间期间的k空间测量值是目前最常规的CS方法,然而,易于产生锯齿化重建。随着深度学习(DL)参与的出现,在加速MRI时,重建来自离心数据的忠实形象变得越来越有前途。回顾性地将数据采样掩模应用到k空间数据上是模拟真实临床环境中的k空间数据的加速获取的一种方式。在本文中,我们比较并提供审查对由训练的深神经网络输出的重建质量应用的效果进行审查。具有相同的超参数选择,我们训练并评估两个不同的反复推理机(轮辋),一个用于每种类型的重叠采样。我们的实验的定性和定量结果表明,具有径向子采样的数据培训的模型达到了更高的性能,并学会估计具有较高保真度的重建,为其他DL接近涉及径向辐射轮换。
translated by 谷歌翻译
两种尺寸的模块化机器人的良好理论模型是边缘连接的方形模块配置,可以通过所谓的滑动移动重新配置。 Dumitrescu和Pach [图形和Combinatorics,2006]证明,始终可以将N $ Squares的一个边缘连接配置重新配置为任何其他使用$ O(n ^ 2)$滑动移动,同时保持配置连接每时每刻。对于某些配置,重新配置可能需要$ \ omega(n ^ 2)$滑动移动。然而,可能就足够较少。我们证明它是难以最小化给定对边缘连接配置的滑动移动的数量。在正面,我们呈现收集和紧凑,一个输入敏感的就地算法只需要$ O(\ bar {p} n)$ slide移动,将一个配置转换为另一个配置,其中$ \ bar {p} $两个边界框的最大周边。正方形仅在边界盒内移动,除了可以通过与边界框相邻的位置移动的时间最多的一个正方形。 $ O(\ bar {p} n)$绑定永远不会超过$ o(n ^ 2)$,并且在只需$ n $和$ \ bar {p} $ 。我们的算法建立在基本原理上,可以有效地转换模块化机器人的良好连接的组件。因此,我们迭代地提高配置内的连接,最终到达一个固体$ xy $-monotone组件。我们实施了聚集&紧凑,并通过实验进行了比较了Moreno和Searist的原始修改,Dumitrescu和PACH算法(MSDP)的[Eurocg 2020]。我们的实验表明,在所有类型的方形配置上,聚集和紧凑始终如一地优于MSDP。
translated by 谷歌翻译