能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
变形攻击是不断影响深度识别系统的众多威胁之一。它包括从不同个体中选择两张面,并将它们融合到包含两者的身份信息的最终图像中。在这项工作中,我们提出了一个新颖的正规化术语,该术语考虑了两者中存在的身份信息,并促进了两个正交潜在媒介的创建。我们在FRLL数据集中评估了我们提出的方法(Orthomad),并在五个不同的数据集中培训时评估了模型的性能。我们以小的RESNET-18为骨干,我们实现了大多数实验的最新结果,而竞争性则在其他实验中结果。本文的代码将公开可用。
translated by 谷歌翻译
本文介绍了基于2022年国际生物识别技术联合会议(IJCB 2022)举行的基于隐私感知合成训练数据(SYN-MAD)的面部变形攻击检测的摘要。该竞赛吸引了来自学术界和行业的12个参与团队,并在11个不同的国家 /地区举行。最后,参与团队提交了七个有效的意见书,并由组织者进行评估。竞争是为了介绍和吸引解决方案的解决方案,这些解决方案涉及检测面部变形攻击的同时,同时出于道德和法律原因保护人们的隐私。为了确保这一点,培训数据仅限于组织者提供的合成数据。提交的解决方案提出了创新,导致在许多实验环境中表现优于所考虑的基线。评估基准现在可在以下网址获得:https://github.com/marcohuber/syn-mad-2022。
translated by 谷歌翻译
这项工作总结了2022年2022年国际生物识别联合会议(IJCB 2022)的IJCB被遮挡的面部识别竞赛(IJCB-OCFR-2022)。OCFR-2022从学术界吸引了总共3支参与的团队。最终,提交了六个有效的意见书,然后由组织者评估。在严重的面部阻塞面前,举行了竞争是为了应对面部识别的挑战。参与者可以自由使用任何培训数据,并且通过使用众所周知的数据集构成面部图像的部分来构建测试数据。提交的解决方案提出了创新,并以所考虑的基线表现出色。这项竞争的主要输出是具有挑战性,现实,多样化且公开可用的遮挡面部识别基准,并具有明确的评估协议。
translated by 谷歌翻译
演示攻击是对生物识别系统的经常性威胁,其中冒名顶替者试图绕过这些系统。人类经常使用背景信息作为视觉系统的上下文提示。然而,关于基于面部的系统,背景经常被丢弃,因为面部呈现攻击检测(PAD)模型主要用面部作物培训。这项工作介绍了两种设置中面板模型(包括多任务学习,对抗训练和动态帧选择)的比较研究:有和没有作物。结果表明,当图像中存在时,性能始终如一。所提出的多任务方法通过大型余量击败了玫瑰Youtu数据集的最先进的结果,其错误率为0.2%。此外,我们分析了Grad-Cam ++的模型预测,目的是调查模型对已知对人类检查有用的背景元素的程度。从这个分析来看,我们可以得出结论,背景线索在所有攻击中都不相关。因此,显示模型的能力仅在必要时利用背景信息。
translated by 谷歌翻译
SARS-COV-2向科学界提出了直接和间接的挑战。从大量国家的强制使用面部面具的强制使用最突出的间接挑战之一。面部识别方法在蒙版和未掩蔽的个体上努力执行具有类似准确性的身份验证。已经表明,这些方法的性能在面部掩模存在下显着下降,特别是如果参考图像是未被掩蔽的。我们提出了FocusFace,一种使用对比学习的多任务架构能够准确地执行蒙面的面部识别。该建议的架构被设计为从头开始训练或者在最先进的面部识别方法上工作,而不牺牲传统的面部识别任务中现有模型的能力。我们还探讨了设计对比学习模块的不同方法。结果以屏蔽掩蔽(M-M)和未掩蔽掩蔽(U-M)面验证性能提出。对于这两个设置,结果都与已发布的方法相提并论,但对于M-M而言,该方法能够优于与其比较的所有解决方案。我们进一步表明,当在现有方法顶部使用我们的方法时,培训计算成本在保持类似的表现时显着降低。在Github上提供了实施和培训的型号。
translated by 谷歌翻译
Out-of-distribution detection is crucial to the safe deployment of machine learning systems. Currently, the state-of-the-art in unsupervised out-of-distribution detection is dominated by generative-based approaches that make use of estimates of the likelihood or other measurements from a generative model. Reconstruction-based methods offer an alternative approach, in which a measure of reconstruction error is used to determine if a sample is out-of-distribution. However, reconstruction-based approaches are less favoured, as they require careful tuning of the model's information bottleneck - such as the size of the latent dimension - to produce good results. In this work, we exploit the view of denoising diffusion probabilistic models (DDPM) as denoising autoencoders where the bottleneck is controlled externally, by means of the amount of noise applied. We propose to use DDPMs to reconstruct an input that has been noised to a range of noise levels, and use the resulting multi-dimensional reconstruction error to classify out-of-distribution inputs. Our approach outperforms not only reconstruction-based methods, but also state-of-the-art generative-based approaches.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
为了实现良好的性能和概括性,医疗图像分割模型应在具有足够可变性的大量数据集上进行培训。由于道德和治理限制以及与标签数据相关的成本,经常对科学发展进行扼杀,并经过对有限数据的培训和测试。数据增强通常用于人为地增加数据分布的可变性并提高模型的通用性。最近的作品探索了图像合成的深层生成模型,因为这种方法将使有效的无限数据生成多种多样的数据,从而解决了通用性和数据访问问题。但是,许多提出的解决方案限制了用户对生成内容的控制。在这项工作中,我们提出了Brainspade,该模型将基于合成扩散的标签发生器与语义图像发生器结合在一起。我们的模型可以在有或没有感兴趣的病理的情况下产生完全合成的大脑标签,然后产生任意引导样式的相应MRI图像。实验表明,Brainspade合成数据可用于训练分割模型,其性能与在真实数据中训练的模型相当。
translated by 谷歌翻译
可以使用医学成像数据研究人类解剖学,形态和相关疾病。但是,访问医学成像数据受到治理和隐私问题,数据所有权和获取成本的限制,从而限制了我们理解人体的能力。解决此问题的一个可能解决方案是创建能够学习的模型,然后生成以相关性的特定特征(例如,年龄,性别和疾病状态)来生成人体的合成图像。最近,以神经网络形式的深层生成模型已被用于创建自然场景的合成2D图像。尽管如此,数据稀缺性,算法和计算局限性仍阻碍了具有正确解剖形态的高分辨率3D体积成像数据的能力。这项工作提出了一个生成模型,可以缩放以产生人类大脑的解剖学正确,高分辨率和现实的图像,并具有必要的质量,以允许进一步的下游分析。产生潜在无限数据的能力不仅能够对人体解剖学和病理学进行大规模研究,而不会危及患者的隐私,而且还可以在异常检测,模态综合,有限的数据和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平的学习领域进行显着提高。道德AI。代码和训练有素的模型可在以下网址提供:https://github.com/amigolab/synthanatomy。
translated by 谷歌翻译