高级深度学习(DL)算法可以预测患者基于乳房成像报告和数据系统(BI-RAD)和密度标准的患者发育乳腺癌的风险。最近的研究表明,多视图分析的结合改善了整体乳房考试分类。在本文中,我们提出了一种新的多视图DL方法,用于乳房X线照片的Bi-RAD和密度评估。所提出的方法首先部署深度卷积网络,用于分别对每个视图进行特征提取。然后将提取的特征堆叠并馈入光梯度升压机(LightGBM)分类器中以预测Bi-RAD和密度分数。我们对内部乳房数据集和公共数据集数字数据库进行广泛的实验,用于筛选乳房X线摄影(DDSM)。实验结果表明,所提出的方法在两个基准数据集中突出了巨大的边距(内部数据集5%,DDSM数据集10%)优于两个基准分类方法。这些结果突出了组合多视图信息来改善乳腺癌风险预测性能的重要作用。
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
Video understanding is a growing field and a subject of intense research, which includes many interesting tasks to understanding both spatial and temporal information, e.g., action detection, action recognition, video captioning, video retrieval. One of the most challenging problems in video understanding is dealing with feature extraction, i.e. extract contextual visual representation from given untrimmed video due to the long and complicated temporal structure of unconstrained videos. Different from existing approaches, which apply a pre-trained backbone network as a black-box to extract visual representation, our approach aims to extract the most contextual information with an explainable mechanism. As we observed, humans typically perceive a video through the interactions between three main factors, i.e., the actors, the relevant objects, and the surrounding environment. Therefore, it is very crucial to design a contextual explainable video representation extraction that can capture each of such factors and model the relationships between them. In this paper, we discuss approaches, that incorporate the human perception process into modeling actors, objects, and the environment. We choose video paragraph captioning and temporal action detection to illustrate the effectiveness of human perception based-contextual representation in video understanding. Source code is publicly available at https://github.com/UARK-AICV/Video_Representation.
translated by 谷歌翻译
Recent development in the field of explainable artificial intelligence (XAI) has helped improve trust in Machine-Learning-as-a-Service (MLaaS) systems, in which an explanation is provided together with the model prediction in response to each query. However, XAI also opens a door for adversaries to gain insights into the black-box models in MLaaS, thereby making the models more vulnerable to several attacks. For example, feature-based explanations (e.g., SHAP) could expose the top important features that a black-box model focuses on. Such disclosure has been exploited to craft effective backdoor triggers against malware classifiers. To address this trade-off, we introduce a new concept of achieving local differential privacy (LDP) in the explanations, and from that we establish a defense, called XRand, against such attacks. We show that our mechanism restricts the information that the adversary can learn about the top important features, while maintaining the faithfulness of the explanations.
translated by 谷歌翻译
Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions. In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches.
translated by 谷歌翻译
We demonstrate the use of a probabilistic machine learning technique to develop stochastic parameterizations of atmospheric column-physics. After suitable preprocessing of NASA's Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA2) data to minimize the effects of high-frequency, high-wavenumber component of MERRA2 estimate of vertical velocity, we use generative adversarial networks to learn the probability distribution of vertical profiles of diabatic sources conditioned on vertical profiles of temperature and humidity. This may be viewed as an improvement over previous similar but deterministic approaches that seek to alleviate both, shortcomings of human-designed physics parameterizations, and the computational demand of the "physics" step in climate models.
translated by 谷歌翻译
Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors, exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding of histologic manifestations of tumor biology.
translated by 谷歌翻译
Recognizing handwriting images is challenging due to the vast variation in writing style across many people and distinct linguistic aspects of writing languages. In Vietnamese, besides the modern Latin characters, there are accent and letter marks together with characters that draw confusion to state-of-the-art handwriting recognition methods. Moreover, as a low-resource language, there are not many datasets for researching handwriting recognition in Vietnamese, which makes handwriting recognition in this language have a barrier for researchers to approach. Recent works evaluated offline handwriting recognition methods in Vietnamese using images from an online handwriting dataset constructed by connecting pen stroke coordinates without further processing. This approach obviously can not measure the ability of recognition methods effectively, as it is trivial and may be lack of features that are essential in offline handwriting images. Therefore, in this paper, we propose the Transferring method to construct a handwriting image dataset that associates crucial natural attributes required for offline handwriting images. Using our method, we provide a first high-quality synthetic dataset which is complex and natural for efficiently evaluating handwriting recognition methods. In addition, we conduct experiments with various state-of-the-art methods to figure out the challenge to reach the solution for handwriting recognition in Vietnamese.
translated by 谷歌翻译
Image captioning is currently a challenging task that requires the ability to both understand visual information and use human language to describe this visual information in the image. In this paper, we propose an efficient way to improve the image understanding ability of transformer-based method by extending Object Relation Transformer architecture with Attention on Attention mechanism. Experiments on the VieCap4H dataset show that our proposed method significantly outperforms its original structure on both the public test and private test of the Image Captioning shared task held by VLSP.
translated by 谷歌翻译
尽管最近关于了解深神经网络(DNN)的研究,但关于DNN如何产生其预测的问题仍然存在许多问题。特别是,给定对不同输入样本的类似预测,基本机制是否会产生这些预测?在这项工作中,我们提出了Neucept,这是一种局部发现关键神经元的方法,该神经元在模型的预测中起着重要作用,并确定模型的机制在产生这些预测中。我们首先提出一个关键的神经元识别问题,以最大程度地提高相互信息目标的序列,并提供一个理论框架,以有效地解决关键神经元,同时控制精度。Neucept接下来以无监督的方式学习了不同模型的机制。我们的实验结果表明,Neucept鉴定的神经元不仅对模型的预测具有强大的影响,而且还具有有关模型机制的有意义的信息。
translated by 谷歌翻译