自我监督学习(SSL)在预处理模型中取得了出色的性能,这些模型可以通过微调进一步用于下游任务。但是,这些自我监督模型可能不会捕获有意义的语义信息,因为在对比度损失中始终将属于同一类的图像视为负对。因此,同一类的图像通常在学习的特征空间中彼此之间相距很远,这不可避免地会阻碍微调过程。为了解决这个问题,我们试图通过增强语义信息来为自我监督模型提供更好的初始化。为此,我们提出了一种对比初始化(COIN)方法,该方法通过在微调之前引入额外的初始化阶段来打破标准的微调管道。广泛的实验表明,借助丰富的语义,我们的硬币显着优于现有方法,而无需引入额外的培训成本,并在多个下游任务上设定了新的最新技术。
translated by 谷歌翻译
最近,一个本地平衡(LB)的样本家族在离散空间中的采样和学习能量模型(EBM)方面表现出色。但是,对这一成功的理论理解是有限的。在这项工作中,我们展示了LB功能如何引起与离散空间中Wasserstein梯度流相对应的LB动力学。从第一原则来看,先前的LB采样器就可以看作是LB动力学相对于锤距的离散化。基于此观察结果,我们提出了一种新算法,即局部平衡跳跃(LBJ),通过将LB动力学相对于仿真时间离散。结果,LBJ具有位置依赖性的“速度”,使其可以提出更大距离的建议。此外,LBJ将每个维度分解为独立的子过程,从而实现方便的并行实现。我们证明了LBJ在各种二进制和分类分布中的采样和学习方面的优势。
translated by 谷歌翻译
Human group detection, which splits crowd of people into groups, is an important step for video-based human social activity analysis. The core of human group detection is the human social relation representation and division.In this paper, we propose a new two-stage multi-head framework for human group detection. In the first stage, we propose a human behavior simulator head to learn the social relation feature embedding, which is self-supervisely trained by leveraging the socially grounded multi-person behavior relationship. In the second stage, based on the social relation embedding, we develop a self-attention inspired network for human group detection. Remarkable performance on two state-of-the-art large-scale benchmarks, i.e., PANDA and JRDB-Group, verifies the effectiveness of the proposed framework. Benefiting from the self-supervised social relation embedding, our method can provide promising results with very few (labeled) training data. We will release the source code to the public.
translated by 谷歌翻译
To obtain a more comprehensive activity understanding for a crowded scene, in this paper, we propose a new problem of panoramic human activity recognition (PAR), which aims to simultaneous achieve the individual action, social group activity, and global activity recognition. This is a challenging yet practical problem in real-world applications. For this problem, we develop a novel hierarchical graph neural network to progressively represent and model the multi-granularity human activities and mutual social relations for a crowd of people. We further build a benchmark to evaluate the proposed method and other existing related methods. Experimental results verify the rationality of the proposed PAR problem, the effectiveness of our method and the usefulness of the benchmark. We will release the source code and benchmark to the public for promoting the study on this problem.
translated by 谷歌翻译
机器学习透明度(ML),试图揭示复杂模型的工作机制。透明ML承诺推进人为因素在目标用户中以人为本的人体目标的工程目标。从以人为本的设计视角,透明度不是ML模型的属性,而是一种能力,即算法与用户之间的关系;因此,与用户的迭代原型和评估对于获得提供透明度的充足解决方案至关重要。然而,由于有限的可用性和最终用户,遵循了医疗保健和医学图像分析的人以人为本的设计原则是具有挑战性的。为了调查医学图像分析中透明ML的状态,我们对文献进行了系统审查。我们的评论在医学图像分析应用程序的透明ML的设计和验证方面揭示了多种严重的缺点。我们发现,大多数研究到达迄今为止透明度作为模型本身的属性,类似于任务性能,而不考虑既未开发也不考虑最终用户也不考虑评估。此外,缺乏用户研究以及透明度声明的偶发验证将当代研究透明ML的医学图像分析有可能对用户难以理解的风险,因此临床无关紧要。为了缓解即将到来的研究中的这些缺点,同时承认人以人为中心设计在医疗保健中的挑战,我们介绍了用于医学图像分析中的透明ML系统的系统设计指令。 Intrult指南建议形成的用户研究作为透明模型设计的第一步,以了解用户需求和域要求。在此过程之后,会产生支持设计选择的证据,最终增加了算法提供透明度的可能性。
translated by 谷歌翻译
Monge Map是指两个概率分布之间的最佳运输映射,并提供了将一个分发转换为另一个的原则方法。尽管最佳运输问题的数值方法的快速发展,但计算Monge地图仍然具有挑战性,特别是对于高维问题。在本文中,我们提出了一种可扩展算法,用于计算两个概率分布之间的Monge地图。我们的算法基于最佳运输问题的弱形式,因此它仅需要来自边缘的样本而不是其分析表达式,并且可以容纳两个具有不同尺寸的分布之间的最佳运输。我们的算法适用于一般成本函数,与其他现有方法相比,用于使用样本估计Monge Maps的方法,这些方法通常用于二次成本。通过具有合成和现实数据的一系列实验来证明我们的算法的性能。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译