这项工作提出了一种用于实验颗粒物理学的域通知的神经网络架构,其使用与时引起室(TPC)技术的粒子相互作用定位作为暗物质研究作为示例应用。 TPC内产生的信号的关键特征是它们允许通过称为重建的过程定位粒子相互作用。虽然多层的感知者(MLPS)被出现为TPC中重建的主要竞争者,但这种黑箱方法不反映出潜在的科学进程的先验知识。本文在基于神经网络的交互本地化的重点看,并根据信号特性和检测器几何形状来编码先前的检测器知识,进入多层神经网络的特征编码和输出层。所得到的域通知的神经网络(DINN限制了初始特征编码层中神经元的接收领域,以便考虑TPC内产生的信号的空间局部性质。DINN的这一方面具有相似之处图形神经网络的新出现区域,因为初始层中的神经元在其后续层中仅连接到少数神经元,与MLP相比,显着降低了网络中的参数的数量。此外,为了解释探测器几何形状,网络的输出层使用两个几何变换来修改,以确保Dinn在检测器内部产生本地化。最终结果是一个神经网络架构,参数比MLP更少60%,但仍然达到类似的本地化性能,并为未来的架构开发提供了一种改进性能的路径,因为它们能够ENC的能力odes附加域名知识进入架构。
translated by 谷歌翻译
We introduce a new benchmark dataset, Placenta, for node classification in an underexplored domain: predicting microanatomical tissue structures from cell graphs in placenta histology whole slide images. This problem is uniquely challenging for graph learning for a few reasons. Cell graphs are large (>1 million nodes per image), node features are varied (64-dimensions of 11 types of cells), class labels are imbalanced (9 classes ranging from 0.21% of the data to 40.0%), and cellular communities cluster into heterogeneously distributed tissues of widely varying sizes (from 11 nodes to 44,671 nodes for a single structure). Here, we release a dataset consisting of two cell graphs from two placenta histology images totalling 2,395,747 nodes, 799,745 of which have ground truth labels. We present inductive benchmark results for 7 scalable models and show how the unique qualities of cell graphs can help drive the development of novel graph neural network architectures.
translated by 谷歌翻译