Deep Neural Networks (DNNs) have been ubiquitously adopted in internet of things and are becoming an integral of our daily life. When tackling the evolving learning tasks in real world, such as classifying different types of objects, DNNs face the challenge to continually retrain themselves according to the tasks on different edge devices. Federated continual learning is a promising technique that offers partial solutions but yet to overcome the following difficulties: the significant accuracy loss due to the limited on-device processing, the negative knowledge transfer caused by the limited communication of non-IID data, and the limited scalability on the tasks and edge devices. In this paper, we propose FedKNOW, an accurate and scalable federated continual learning framework, via a novel concept of signature task knowledge. FedKNOW is a client side solution that continuously extracts and integrates the knowledge of signature tasks which are highly influenced by the current task. Each client of FedKNOW is composed of a knowledge extractor, a gradient restorer and, most importantly, a gradient integrator. Upon training for a new task, the gradient integrator ensures the prevention of catastrophic forgetting and mitigation of negative knowledge transfer by effectively combining signature tasks identified from the past local tasks and other clients' current tasks through the global model. We implement FedKNOW in PyTorch and extensively evaluate it against state-of-the-art techniques using popular federated continual learning benchmarks. Extensive evaluation results on heterogeneous edge devices show that FedKNOW improves model accuracy by 63.24% without increasing model training time, reduces communication cost by 34.28%, and achieves more improvements under difficult scenarios such as large numbers of tasks or clients, and training different complex networks.
translated by 谷歌翻译
图形结构化数据通常在自然界中具有动态字符,例如,在许多现实世界中,链接和节点的添加。近年来见证了对这种图形数据进行建模的动态图神经网络所支付的越来越多的注意力,几乎所有现有方法都假设,当建立新的链接时,应通过学习时间动态来传播邻居节点的嵌入。新的信息。但是,这种方法遭受了这样的限制,如果新连接引入的节点包含嘈杂的信息,那么将其知识传播到其他节点是不可靠的,甚至导致模型崩溃。在本文中,我们提出了Adanet:通过增强动态图神经网络的强化知识适应框架。与以前的方法相反,一旦添加了新链接,就立即更新邻居节点的嵌入方式,Adanet试图自适应地确定由于涉及的新链接而应更新哪些节点。考虑到是否更新一个邻居节点的嵌入的决定将对其他邻居节点产生很大的影响,因此,我们将节点更新的选择作为序列决策问题,并通过强化学习解决此问题。通过这种方式,我们可以将知识自适应地传播到其他节点,以学习健壮的节点嵌入表示。据我们所知,我们的方法构成了通过强化学习的动态图神经网络来探索强大知识适应的首次尝试。在三个基准数据集上进行的广泛实验表明,Adanet可以实现最新的性能。此外,我们通过在数据集中添加不同程度的噪声来执行实验,并定量和定性地说明ADANET的鲁棒性。
translated by 谷歌翻译
盲人面部修复(BFR)旨在从低品质的图像中恢复高质量的面部图像,并通常求助于面部先验,以改善恢复性能。但是,当前的方法仍然遇到两个主要困难:1)如何在不进行大规模调整的情况下得出强大的网络体系结构; 2)如何从一个网络中的多个面部先验捕获互补信息以提高恢复性能。为此,我们提出了一个面部修复搜索网络(FRSNET),以适应我们指定的搜索空间内的合适特征提取体系结构,这可以直接有助于恢复质量。在FRSNET的基础上,我们通过多个学习方案进一步设计了多个面部先验搜索网络(MFPSNET)。 MFPSNET最佳地从不同的面部先验中提取信息,并将信息融合到图像特征中,以确保保留外部指导和内部特征。通过这种方式,MFPSNet充分利用了语义级别(解析图),几何级别(面部热图),参考级别(面部词典)和像素级(降级图像)信息,从而产生忠实且逼真的图像。定量和定性实验表明,MFPSNET在合成和现实世界数据集上对最先进的BFR方法表现出色。这些代码可公开可用:https://github.com/yyj1ang/mfpsnet。
translated by 谷歌翻译
知识蒸馏(KD)证明了其有效性,可以提高图形神经网络(GNN)的性能,其目标是将知识从更深的教师gnn蒸馏成较浅的学生GNN。但是,由于众所周知的过度参数和过度光滑的问题,实际上很难培训令人满意的教师GNN,从而导致实际应用中的知识转移无效。在本文中,我们通过对GNN的加强学习(称为FreeKD)提出了第一个自由方向知识蒸馏框架,而这不再需要提供更深入的良好优化的教师GNN。我们工作的核心思想是协作建立两个较浅的GNN,以通过以层次结构方式通过加强学习来交流知识。正如我们观察到的一个典型的GNN模型在训练过程中通常在不同节点的表现更好,更差的表现,我们设计了一种动态和自由方向的知识转移策略,该策略由两个级别的动作组成:1)节点级别的动作决定了知识的方向。两个网络的相应节点之间的传输;然后2)结构级的动作确定了要传播的节点级别生成的局部结构。从本质上讲,我们的FreeKD是一个一般且原则性的框架,可以自然与不同架构的GNN兼容。在五个基准数据集上进行的广泛实验表明,我们的FreeKD在很大的边距上优于两个基本GNN,并显示了其对各种GNN的功效。更令人惊讶的是,我们的FreeKD比传统的KD算法具有可比性甚至更好的性能,这些KD算法将知识从更深,更强大的教师GNN中提取。
translated by 谷歌翻译
盲面修复(BFR)旨在从相应的低质量(LQ)输入中构建高质量(HQ)面部图像。最近,已经提出了许多BFR方法,并取得了杰出的成功。但是,这些方法经过私人合成的数据集进行了培训或评估,这使得与后续方法相比的方法是不可行的。为了解决这个问题,我们首先合成两个称为EDFEACE-CELEB-1M(BFR128)和EDFACE-CELEB-150K(BFR512)的盲面恢复基准数据集。在五个设置下,将最先进的方法在它们的五个设置下进行了基准测试,包括模糊,噪声,低分辨率,JPEG压缩伪像及其组合(完全退化)。为了使比较更全面,应用了五个广泛使用的定量指标和两个任务驱动的指标,包括平均面部标志距离(AFLD)和平均面部ID余弦相似性(AFICS)。此外,我们开发了一个有效的基线模型,称为Swin Transformer U-NET(昏迷)。带有U-NET体系结构的昏迷器应用了注意机制和移动的窗口方案,以捕获远程像素相互作用,并更多地关注重要功能,同时仍受到有效训练。实验结果表明,所提出的基线方法对各种BFR任务的SOTA方法表现出色。
translated by 谷歌翻译
深度神经网络(DNN)已成为移动和嵌入式系统中的普遍存在的技术,用于图像/对象识别和分类。执行多个DNN的趋势同时加剧了资源受限移动设备上满足严格延迟/准确性要求的现有限制。现有技术通过根据资源动态缩放模型大小来探索精度资源权衡的光。然而,这种模型缩放方法接近迫在眉睫的挑战:(i)模型尺寸的大空间探索,(ii)对不同模型组合的培训时间非常长。在本文中,我们介绍了Legodnn,一种用于在移动视觉系统中运行多DNN工作负载的轻质块粒度缩放解决方案。 Legodnn仅通过在DNN中提取和培训少数常见块(例如,在VGG和RENET中的VGG和8中的8中)来保证短模型培训时间。在运行时,Legodnn最佳地结合了这些块的后代模型,以最大限度地在特定资源和延迟约束下最大限度地提高精度,同时通过DNN的智能块级缩放来降低切换开销。我们在Tensorflow Lite中实现Legodnn,并通过一组普遍的DNN模型,广泛地评估了最先进的技术(浮标缩放,知识蒸馏和模型压缩)。评估结果表明,乐高达在模型尺寸下提供了1,296倍至279,936倍,而在不增加训练时间的情况下,推断准确性的提高高达31.74%,降低缩放能耗减少了71.07%。
translated by 谷歌翻译
域适应(da)尝试将知识从标记的源域传输到从源的不同分发的未标记的目标域。为此,DA方法包括源分类目标,以提取源知识和域对齐目标以减少域移位,确保知识转移。通常,前DA方法采用一些重量的超参数来线性地结合培训目标来形成整体目标。然而,由于域移位,这些目标的梯度方向可能彼此冲突。在这种情况下,线性优化方案可能会降低整体目标值,以损坏其中一个培训目标,导致限制解决方案。在本文中,我们从基于梯度的角度来看了DA的优化方案。我们提出了帕累托域适应(Paretoda)方法来控制整体优化方向,旨在协同优化所有培训目标。具体地,为了达到目标域的理想解决方案,我们设计了模拟目标分类的替代损失。为了提高目标预测准确性以支持模拟,我们提出了一种目标预测精炼机制,其通过贝叶斯定理利用域标签。另一方面,由于对象的加权方案的先验知识通常无法指导优化来接近目标域上的最佳解决方案,因此我们提出了一种动态的偏好机制,以动态指导我们的合作优化通过替代损失的梯度保持未标记的目标数据集。关于图像分类和语义分割基准的广泛实验证明了Paretoda的有效性
translated by 谷歌翻译
最近,无监督的域适应是一种有效的范例,用于概括深度神经网络到新的目标域。但是,仍有巨大的潜力才能达到完全监督的性能。在本文中,我们提出了一种新颖的主动学习策略,以帮助目标域中的知识转移,有效域适应。我们从观察开始,即当训练(源)和测试(目标)数据来自不同的分布时,基于能量的模型表现出自由能量偏差。灵感来自这种固有的机制,我们经验揭示了一种简单而有效的能源 - 基于能量的采样策略揭示了比需要特定架构或距离计算的现有方法的最有价值的目标样本。我们的算法,基于能量的活动域适应(EADA),查询逻辑数据组,它将域特征和实例不确定性结合到每个选择回合中。同时,通过通过正则化术语对准源域周围的目标数据紧凑的自由能,可以隐含地减少域间隙。通过广泛的实验,我们表明EADA在众所周知的具有挑战性的基准上超越了最先进的方法,具有实质性的改进,使其成为开放世界中的一个有用的选择。代码可在https://github.com/bit-da/eada获得。
translated by 谷歌翻译
最近深入学习已成功应用于无监督的主动学习。然而,当前方法试图通过自动编码器来忽略样本关系的同时学习非线性转换,留下巨大的空间来设计用于无监督的主动学习的更有效的表示学习机制。在本文中,我们通过可学习的图表提出了一种新颖的无监督的主动学习模型,命名为Allg。 allg从学习最佳图形结构中获益,以获取更好的样本表示,然后选择代表样本。为了使学习的图形结构更加稳定和有效,我们考虑了$ k $ -nealest邻居图作为先验,并学习关系传播图形结构。我们还将快捷方式连接到不同的层中,可以在一定程度上缓解众所周知的过平滑问题。据我们所知,这是第一次利用图形结构学习的第一次尝试,以便无监督的主动学习。在六个数据集上进行的广泛实验证明了我们的方法的功效。
translated by 谷歌翻译
因果推断是在采用干预时估计因果关系中的因果效应。确切地说,在具有二进制干预措施的因果模型中,即控制和治疗,因果效应仅仅是事实和反事实之间的差异。困难是必须估算反事实,因此因果效应只能是估计。估计反事实的主要挑战是确定影响结果和治疗的混杂因素。一种典型的方法是将因果推论作为监督学习问题,因此可以预测反事实。包括线性回归和深度学习模型,最近的机器学习方法已适应因果推断。在本文中,我们提出了一种通过使用变分信息瓶颈(CEVIB)来估计因果效应的方法。有希望的点是,VIB能够自然地将变量从数据中蒸馏出来,从而可以通过使用观察数据来估计因果效应。我们通过将CEVIB应用于三个数据集,表明我们的方法实现了最佳性能,将其应用于其他方法。我们还实验表明了我们方法的鲁棒性。
translated by 谷歌翻译