Over the past few years, developing a broad, universal, and general-purpose computer vision system has become a hot topic. A powerful universal system would be capable of solving diverse vision tasks simultaneously without being restricted to a specific problem or a specific data domain, which is of great importance in practical real-world computer vision applications. This study pushes the direction forward by concentrating on the million-scale multi-domain universal object detection problem. The problem is not trivial due to its complicated nature in terms of cross-dataset category label duplication, label conflicts, and the hierarchical taxonomy handling. Moreover, what is the resource-efficient way to utilize emerging large pre-trained vision models for million-scale cross-dataset object detection remains an open challenge. This paper tries to address these challenges by introducing our practices in label handling, hierarchy-aware loss design and resource-efficient model training with a pre-trained large model. Our method is ranked second in the object detection track of Robust Vision Challenge 2022 (RVC 2022). We hope our detailed study would serve as an alternative practice paradigm for similar problems in the community. The code is available at https://github.com/linfeng93/Large-UniDet.
translated by 谷歌翻译
Despite the remarkable success of existing methods for few-shot segmentation, there remain two crucial challenges. First, the feature learning for novel classes is suppressed during the training on base classes in that the novel classes are always treated as background. Thus, the semantics of novel classes are not well learned. Second, most of existing methods fail to consider the underlying semantic gap between the support and the query resulting from the representative bias by the scarce support samples. To circumvent these two challenges, we propose to activate the discriminability of novel classes explicitly in both the feature encoding stage and the prediction stage for segmentation. In the feature encoding stage, we design the Semantic-Preserving Feature Learning module (SPFL) to first exploit and then retain the latent semantics contained in the whole input image, especially those in the background that belong to novel classes. In the prediction stage for segmentation, we learn an Self-Refined Online Foreground-Background classifier (SROFB), which is able to refine itself using the high-confidence pixels of query image to facilitate its adaptation to the query image and bridge the support-query semantic gap. Extensive experiments on PASCAL-5$^i$ and COCO-20$^i$ datasets demonstrates the advantages of these two novel designs both quantitatively and qualitatively.
translated by 谷歌翻译
感谢您的跨模式检索技术,通过将它们投射到一个共同的空间中,可以在24小时的监视系统中重新进行重新识别,从而实现了可见的信号(RGB-IR)重新识别(RE-ID)。但是,关于探测到探测器,几乎所有现有的基于RGB-IR的跨模式人RE-ID方法都集中在图像到图像匹配上,而视频对视频匹配包含更丰富的空间 - 和时间信息仍未探索。在本文中,我们主要研究基于视频的跨模式人Re-ID方法。为了实现这项任务,构建了一个基于视频的RGB-IR数据集,其中927个有效身份,具有463,259帧和21,863个曲目,由12个RGB/IR摄像机捕获。基于我们构造的数据集,我们证明,随着曲目中帧的增加,该性能确实达到了更多的增强功能,证明了视频对视频匹配在RGB-IR RE-ID中的重要性。此外,进一步提出了一种新颖的方法,不仅将两种模态投射到模态不变子空间,而且还提取了运动不变的时间记忆。多亏了这两种策略,我们基于视频的跨模式人重新ID取得了更好的结果。代码和数据集以:https://github.com/vcmproject233/mitml发布。
translated by 谷歌翻译
盲目图像超分辨率(SR)的典型方法通过直接估算或学习潜在空间中的降解表示来处理未知的降解。这些方法的一个潜在局限性是,他们假设可以通过整合各种手工降解(例如,比科比克下采样)来模拟未知的降解,这不一定是正确的。现实世界中的降解可能超出了手工降解的模拟范围,这被称为新型降解。在这项工作中,我们建议学习一个潜在的降解空间,可以将其从手工制作的(基本)降解中推广到新的降解。然后将其在此潜在空间中获得的新型降解的表示形式被利用,以生成与新型降解一致的降级图像,以构成SR模型的配对训练数据。此外,我们执行各种推断,以使潜在表示空间中的降解后降解与先前的分布(例如高斯分布)相匹配。因此,我们能够采样更多的高质量表示以进行新的降级,以增加SR模型的训练数据。我们对合成数据集和现实数据集进行了广泛的实验,以验证我们在新型降解中盲目超分辨率的有效性和优势。
translated by 谷歌翻译
虽然基于微调对象检测的基于微调的方法已经取得了显着的进步,但尚未得到很好的解决的关键挑战是基本类别的潜在特定于类别的过度拟合,并且针对新颖的类别的样本特异性过度拟合。在这项工作中,我们设计了一个新颖的知识蒸馏框架,以指导对象探测器的学习,从而抑制基础类别的前训练阶段的过度拟合,并在小型课程上进行微调阶段。要具体而言,我们首先提出了一种新颖的位置感知的视觉袋模型,用于从有限尺寸的图像集中学习代表性的视觉袋(BOVW),该模型用于基于相似性来编码常规图像在学习的视觉单词和图像之间。然后,我们基于以下事实执行知识蒸馏,即图像应在两个不同的特征空间中具有一致的BOVW表示。为此,我们独立于对象检测的特征空间预先学习特征空间,并在此空间中使用BOVW编码图像。可以将图像的BOVW表示形式视为指导对象探测器的学习:对象检测器的提取特征对同一图像的提取特征有望通过蒸馏知识得出一致的BOVW表示。广泛的实验验证了我们方法的有效性,并证明了优于其他最先进方法的优势。
translated by 谷歌翻译
几次射击对象检测的大多数现有方法都遵循微调范式,该范式可能假设可以通过众多样本的基本类别学习并将其隐式转移到具有限量样本的新颖类中,从而将类别的概括性知识隐含地转移到有限的类别中。舞台培训策略。但是,这不一定是正确的,因为对象检测器几乎无法在没有明确的建模的情况下自动区分类别不合时宜的知识和特定于类的知识。在这项工作中,我们建议在基础和新颖类之间学习三种类型的类不足的共同点:与识别相关的语义共同点,与定位相关的语义共同点和分布共同点。我们基于内存库设计了一个统一的蒸馏框架,该框架能够共同有效地进行所有三种类型的共同点。广泛的实验表明,我们的方法可以很容易地集成到大多数现有的基于微调的方法中,并始终如一地通过大幅度提高性能。
translated by 谷歌翻译
序列表示学习的主要挑战是捕获远程时间依赖性。监督序列表示学习的典型方法是基于复发性神经网络构建的,以捕获时间依赖性。这些方法的一个潜在局限性是,它们仅在序列中明确对相邻时间步长的一阶信息相互作用进行建模,因此,未完全利用了非相应时间步长之间的高阶相互作用。它极大地限制了建模远程时间依赖性的能力,因为由于时间信息稀释和梯度消失,无法长期保持一阶相互作用所学的时间特征。为了应对这一限制,我们提出了用于监督序列表示学习的非本地复发性神经记忆(NRNM),该学习执行非本地操作\ Mr {通过自我关注机制}以在滑动时间内学习全阶相互作用内存块和模拟内存块之间的全局相互作用以封闭式的复发方式。因此,我们的模型能够捕获远程依赖性。此外,我们的模型可以蒸馏出高阶相互作用中包含的潜在高级特征。我们验证了NRNM在不同模态的三种序列应用上的有效性和概括,包括序列分类,逐步的顺序预测和序列相似性学习。我们的模型与针对这些序列应用中的每个序列应用专门设计的其他最新方法进行了比较。
translated by 谷歌翻译
虽然对图像背景恢复的研究从常规大小的降级图像恢复已经取得了显着的进步,但由于计算复杂性和记忆使用情况的爆炸式增长以及缺陷,恢复超高分辨率(例如4K)图像仍然是一项极具挑战性的任务。带注释的数据。在本文中,我们提出了一种用于超高分辨率图像恢复的新型模型,称为全局逐步生成网络(GLSGN),该模型采用涉及四个恢复途径的逐步恢复策略:三个局部途径和一条全球途径。本地途径着重于以局部但高分辨率的图像贴片的细粒度进行图像恢复,而全球途径则在缩放尺寸但完整的图像上执行图像恢复,以在全球视图中为本地途径提供线索包括语义和噪声模式。为了平滑这四个途径之间的相互协作,我们的GLSGN旨在确保在低级内容,感知注意力,恢复强度和高级语义方面的四个方面的跨道路一致性。作为这项工作的另一个主要贡献,我们还介绍了迄今为止的第一个超高分辨率数据集,以删除反射和降雨条纹,包括4,670个现实世界和合成图像。跨三个典型的图像背景修复任务进行的广泛实验,包括删除图像反射,删除图像雨条和图像去悬来表明我们的GLSGN始终优于最先进的方法。
translated by 谷歌翻译
典型的文本检测器遵循两阶段的发现策略:首先检测文本实例的精确边界,然后在定期的文本区域内执行文本识别。尽管这种策略取得了实质性进展,但有两个基本的局限性。 1)文本识别的性能在很大程度上取决于文本检测的精度,从而导致从检测到识别的潜在误差传播。 2)桥接检测和识别的ROI种植会带来背景的噪音,并在合并或从特征地图中插值时导致信息丢失。在这项工作中,我们提出了单个镜头自力更生的场景文本sottter(SRSTS),该场景通过将识别解除识别来规避这些限制。具体而言,我们并行进行文本检测和识别,并通过共享的积极锚点架起它们。因此,即使确切的文本边界要检测到具有挑战性,我们的方法也能够正确识别文本实例。此外,我们的方法可大大降低文本检测的注释成本。在常规基准和任意形状的基准上进行了广泛的实验表明,就准确性和效率而言,我们的SRST与以前的最先进的观察者相比有利。
translated by 谷歌翻译
无监督的域适应性(UDA)方法已广泛用于提高模型在一般计算机视觉中的适应能力。但是,与自然图像不同,在组织病理学图像中不同类别的核存在巨大的语义差距。它仍未探索,我们如何构建通用的UDA模型来精确分割或分类不同数据集的核实例。在这项工作中,我们提出了一个新颖的深神经网络,即用于UDA Nuclei实例分割和分类的类别感知特征对齐和伪标记网络(CAPL-NET)。具体而言,我们首先提出一个具有动态可学习权衡权重的类别级特征对齐模块。其次,我们建议通过基于Nuclei-Level原型特征的伪标签来促进目标数据上的模型性能。关于跨域核实例分割和分类任务的综合实验表明,我们的方法优于最先进的UDA方法。
translated by 谷歌翻译