预测意大利电负载的整个24轮廓的问题被寻址为多任务学习问题,其复杂性通过替代正则化方法保持控制。鉴于四分之一小时的采样,使用96个预测器,每个预测器都在线性地取决于96个回归量。 96x96矩阵重量形成96x96矩阵,可以看到并显示为在方域上采样的表面。探讨了降低表面自由度的不同正则化和稀疏方法,比较了所获得的预测与意大利传输系统操作员泰尔纳的预测。除了在四分之一小时意味着绝对百分比误差和平均绝对误差方面表现出艰难的替代,预测残差与Terna略微相关,这表明进一步改进可以随着预测聚集而产生进一步的改进。事实上,聚合预测在四分之一小时和每日平均值百分比误差方面产生了进一步的相关液滴,而是在考虑的三个测试年度上平均误差和根均值误差(高达30%)。
translated by 谷歌翻译
Every automaton can be decomposed into a cascade of basic automata. This is the Prime Decomposition Theorem by Krohn and Rhodes. We show that cascades allow for describing the sample complexity of automata in terms of their components. In particular, we show that the sample complexity is linear in the number of components and the maximum complexity of a single component, modulo logarithmic factors. This opens to the possibility of learning automata representing large dynamical systems consisting of many parts interacting with each other. It is in sharp contrast with the established understanding of the sample complexity of automata, described in terms of the overall number of states and input letters, which implies that it is only possible to learn automata where the number of states is linear in the amount of data available. Instead our results show that one can learn automata with a number of states that is exponential in the amount of data available.
translated by 谷歌翻译
尽管最近的自动文本识别取得了进步,但在历史手稿方面,该性能仍然保持温和。这主要是因为缺乏可用的标记数据来训练渴望数据的手写文本识别(HTR)模型。由于错误率的降低,关键字发现系统(KWS)提供了HTR的有效替代方案,但通常仅限于封闭的参考词汇。在本文中,我们提出了一些学习范式,用于发现几个字符(n-gram)的序列,这些序列需要少量标记的训练数据。我们表明,对重要的n-gram的认识可以减少系统对词汇的依赖。在这种情况下,输入手写线图像中的vocabulary(OOV)单词可能是属于词典的n-gram序列。对我们提出的多代表方法进行了广泛的实验评估。
translated by 谷歌翻译
完全可观察到的非确定性(FONT)计划通过具有非确定性效果的行动模型不确定性。现有的FONS计划算法是有效的,并采用了广泛的技术。但是,大多数现有算法对于处理非确定性和任务规模并不强大。在本文中,我们开发了一种新颖的迭代深度优先搜索算法,该算法解决了精心的计划任务并产生了强大的循环策略。我们的算法是针对精心计划的明确设计的,更直接地解决了Fond Planning的非确定性方面,并且还利用了启发式功能的好处,以使算法在迭代搜索过程中更有效。我们将提出的算法与著名的Food Planners进行了比较,并表明它在考虑不同的指标的几种不同类型的FOND领域中具有良好的性能。
translated by 谷歌翻译
增强业务流程管理系统(ABPMS)是一类新兴的过程感知信息系统,可利用值得信赖的AI技术。ABPMS增强了业务流程的执行,目的是使这些过程更加适应性,主动,可解释和上下文敏感。该宣言为ABPMS提供了愿景,并讨论了需要克服实现这一愿景的研究挑战。为此,我们定义了ABPM的概念,概述了ABPMS中流程的生命周期,我们讨论了ABPMS的核心特征,并提出了一系列挑战以实现具有这些特征的系统。
translated by 谷歌翻译
乳腺癌是最常见的癌症,并寄存癌症的妇女的最多死亡人数。结合大规模筛查政策的诊断活动的最新进展显着降低了乳腺癌患者的死亡率。然而,病理学家手动检查病理学家的载玻片是麻烦的,耗时的,并且受到显着的和观察者内的变异性。最近,全幻灯片扫描系统的出现授权了病理幻灯片的快速数字化,并启用了开发数字工作流程。这些进步进一步使利用人工智能(AI)来协助,自动化和增强病理诊断。但是AI技术,尤其是深度学习(DL),需要大量的高质量注释数据来学习。构建此类任务特定的数据集造成了几个挑战,例如数据获取级别约束,耗时和昂贵的注释,以及私人信息的匿名化。在本文中,我们介绍了乳腺癌亚型(BRACS)DataSet,一个大队列的注释血清杂环蛋白和eosin(H&E) - 染色的图像,以促进乳房病变的表征。 BRACS包含547个全幻灯片图像(WSIS),并从WSI中提取4539个兴趣区域(ROI)。每个WSI和各自的ROI都是通过三个董事会认证的病理学家的共识注释为不同的病变类别。具体而言,Bracs包括三种病变类型,即良性,恶性和非典型,其进一步亚级分为七个类别。据我们所知,这是WSI和ROI水平的最大的乳腺癌亚型的附带数据集。此外,通过包括被升值的非典型病变,Bracs提供了利用AI更好地理解其特征的独特机会。
translated by 谷歌翻译
Advances in computer vision and machine learning techniques have led to significant development in 2D and 3D human pose estimation from RGB cameras, LiDAR, and radars. However, human pose estimation from images is adversely affected by occlusion and lighting, which are common in many scenarios of interest. Radar and LiDAR technologies, on the other hand, need specialized hardware that is expensive and power-intensive. Furthermore, placing these sensors in non-public areas raises significant privacy concerns. To address these limitations, recent research has explored the use of WiFi antennas (1D sensors) for body segmentation and key-point body detection. This paper further expands on the use of the WiFi signal in combination with deep learning architectures, commonly used in computer vision, to estimate dense human pose correspondence. We developed a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions. The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input. This paves the way for low-cost, broadly accessible, and privacy-preserving algorithms for human sensing.
translated by 谷歌翻译
Due to the environmental impacts caused by the construction industry, repurposing existing buildings and making them more energy-efficient has become a high-priority issue. However, a legitimate concern of land developers is associated with the buildings' state of conservation. For that reason, infrared thermography has been used as a powerful tool to characterize these buildings' state of conservation by detecting pathologies, such as cracks and humidity. Thermal cameras detect the radiation emitted by any material and translate it into temperature-color-coded images. Abnormal temperature changes may indicate the presence of pathologies, however, reading thermal images might not be quite simple. This research project aims to combine infrared thermography and machine learning (ML) to help stakeholders determine the viability of reusing existing buildings by identifying their pathologies and defects more efficiently and accurately. In this particular phase of this research project, we've used an image classification machine learning model of Convolutional Neural Networks (DCNN) to differentiate three levels of cracks in one particular building. The model's accuracy was compared between the MSX and thermal images acquired from two distinct thermal cameras and fused images (formed through multisource information) to test the influence of the input data and network on the detection results.
translated by 谷歌翻译
The advances in Artificial Intelligence are creating new opportunities to improve lives of people around the world, from business to healthcare, from lifestyle to education. For example, some systems profile the users using their demographic and behavioral characteristics to make certain domain-specific predictions. Often, such predictions impact the life of the user directly or indirectly (e.g., loan disbursement, determining insurance coverage, shortlisting applications, etc.). As a result, the concerns over such AI-enabled systems are also increasing. To address these concerns, such systems are mandated to be responsible i.e., transparent, fair, and explainable to developers and end-users. In this paper, we present ComplAI, a unique framework to enable, observe, analyze and quantify explainability, robustness, performance, fairness, and model behavior in drift scenarios, and to provide a single Trust Factor that evaluates different supervised Machine Learning models not just from their ability to make correct predictions but from overall responsibility perspective. The framework helps users to (a) connect their models and enable explanations, (b) assess and visualize different aspects of the model, such as robustness, drift susceptibility, and fairness, and (c) compare different models (from different model families or obtained through different hyperparameter settings) from an overall perspective thereby facilitating actionable recourse for improvement of the models. It is model agnostic and works with different supervised machine learning scenarios (i.e., Binary Classification, Multi-class Classification, and Regression) and frameworks. It can be seamlessly integrated with any ML life-cycle framework. Thus, this already deployed framework aims to unify critical aspects of Responsible AI systems for regulating the development process of such real systems.
translated by 谷歌翻译
Background: Image analysis applications in digital pathology include various methods for segmenting regions of interest. Their identification is one of the most complex steps, and therefore of great interest for the study of robust methods that do not necessarily rely on a machine learning (ML) approach. Method: A fully automatic and optimized segmentation process for different datasets is a prerequisite for classifying and diagnosing Indirect ImmunoFluorescence (IIF) raw data. This study describes a deterministic computational neuroscience approach for identifying cells and nuclei. It is far from the conventional neural network approach, but it is equivalent to their quantitative and qualitative performance, and it is also solid to adversative noise. The method is robust, based on formally correct functions, and does not suffer from tuning on specific data sets. Results: This work demonstrates the robustness of the method against the variability of parameters, such as image size, mode, and signal-to-noise ratio. We validated the method on two datasets (Neuroblastoma and NucleusSegData) using images annotated by independent medical doctors. Conclusions: The definition of deterministic and formally correct methods, from a functional to a structural point of view, guarantees the achievement of optimized and functionally correct results. The excellent performance of our deterministic method (NeuronalAlg) to segment cells and nuclei from fluorescence images was measured with quantitative indicators and compared with those achieved by three published ML approaches.
translated by 谷歌翻译