变压器体系结构在许多最新应用程序中取得了显着进展。然而,尽管他们取得了成功,但现代变形金刚依赖于自我发挥的机制,其时间和空间复杂性在输入的长度上是二次的。已经提出了几种方法来加快自我注意力的机制以实现次级运行时间。但是,这些作品中的绝大多数并不伴随着严格的错误保证。在这项工作中,我们在许多情况下就自我注意的计算复杂性建立了下限。我们证明,自我注意力的时间复杂性在输入长度上必定是二次的,除非强烈的指数时间假设(SETH)是错误的。即使注意力计算仅执行大约和各种注意力机制,该论点也存在。作为对我们的下限的补充,我们表明确实可以使用有限的泰勒级数在线性时间中近似点产物自我发作,而成本依赖于多项式顺序。
translated by 谷歌翻译
徽标检索是一个具有挑战性的问题,因为与图像检索任务相比,相似性的定义更为主观,并且已知相似性的集合非常稀缺。为了应对这一挑战,在本文中,我们提出了一种简单但有效的基于细分市场的增强策略,以引入人工相似的徽标,以训练徽标检索的深层网络。在这种新颖的增强策略中,我们首先在徽标中找到细分市场,并在细分市场上应用旋转,缩放和颜色变化等转换,这与传统的图像级增强策略不同。此外,我们评估最近引入的基于排名的损失函数Smooth-AP是否是学习徽标检索相似性的更好方法。在大规模的METU商标数据集上,我们表明(i)基于细分市场的增强策略与基线模型或图像级增强策略相比提高了检索性能,并且(ii)平滑 - AP的表现确实比徽标的常规损失更好恢复。
translated by 谷歌翻译
精确分割器官 - 危险(OARS)是优化放射治疗计划的先驱。现有的基于深度学习的多尺度融合体系结构已显示出2D医疗图像分割的巨大能力。他们成功的关键是汇总全球环境并保持高分辨率表示。但是,当转化为3D分割问题时,由于其大量的计算开销和大量数据饮食,现有的多尺度融合体系结构可能表现不佳。为了解决此问题,我们提出了一个新的OAR分割框架,称为Oarfocalfusenet,该框架融合了多尺度功能,并采用焦点调制来捕获多个尺度的全局本地上下文。每个分辨率流都具有来自不同分辨率量表的特征,并且多尺度信息汇总到模型多样化的上下文范围。结果,功能表示将进一步增强。在我们的实验设置中与OAR分割以及多器官分割的全面比较表明,我们提出的Oarfocalfusenet在公开可用的OpenKBP数据集和Synapse Multi-Organ细分方面的最新最新方法优于最新的最新方法。在标准评估指标方面,提出的两种方法(3D-MSF和Oarfocalfusenet)均表现出色。我们的最佳性能方法(Oarfocalfusenet)在OpenKBP数据集上获得的骰子系数为0.7995,Hausdorff的距离为5.1435,而Synapse Multi-Organ分段数据集则获得了0.8137的骰子系数。
translated by 谷歌翻译
扫描像素摄像机是一种新型的低成本低功率传感器,不受衍射限制。它作为扫描过程中从场景的各个部分提取的样品序列产生数据。它可以提供非常详细的图像,而牺牲了采样和缓慢的图像获取时间。本文提出了一种新的算法,该算法允许传感器在此序列的过程中调整采样量。这可以通过最大程度地减少图像和传输场景所需的带宽和时间来克服这些限制,同时保持图像质量。我们检查了图像分类和语义分割的应用,与完全采样的输入相比,能够获得相似的结果,而使用样本少80%
translated by 谷歌翻译
我们检查了通过直播(OTA)聚合的联合学习(FL),移动用户(MUS)旨在借助聚合本地梯度的参数服务器(PS)在全球模型上达成共识。在OTA FL中,MUS在每个训练回合中使用本地数据训练他们的模型,并以未编码的方式使用相同的频带同时传输其梯度。根据超级梯度的接收信号,PS执行全局模型更新。尽管OTA FL的通信成本显着降低,但它容易受到不利的通道影响和噪声的影响。在接收器侧采用多个天线可以减少这些效果,但是对于远离PS的用户来说,路径损失仍然是一个限制因素。为了改善此问题,在本文中,我们提出了一种基于无线的层次FL方案,该方案使用中间服务器(ISS)在MUS更密集的区域形成簇。我们的计划利用OTA群集聚合与MUS与其相应的IS进行交流,而OTA全球聚合从ISS到PS。我们提出了针对所提出算法的收敛分析,并通过对使用ISS的衍生分析表达式和实验结果的数值评估显示,与单独使用较少的传输功率相比,利用ISS的结果比单独的OTA FL具有更快的收敛性和更好的性能。我们还使用不同数量的群集迭代以及不同数据集和数据分布来验证性能的结果。我们得出的结论是,群集聚集的最佳选择取决于MUS和集群之间的数据分布。
translated by 谷歌翻译
本文提出了一个低成本且高度准确的ECG监测系统,用于针对可穿戴移动传感器的个性化早期心律不齐检测。对个性化心电图监测的早期监督方法需要异常和正常的心跳来训练专用分类器。但是,在真实的情况下,个性化算法嵌入了可穿戴设备中,这种训练数据不适合没有心脏障碍史的健康人。在这项研究中,(i)我们对通过稀疏字典学习获得的健康信号空间进行了无空间分析,并研究了如何简单的无效空间投影或基于最小二乘的规范性分类方法可以降低计算复杂性,而无需牺牲牺牲计算的复杂性。与基于稀疏表示的分类相比,检测准确性。 (ii)然后,我们引入了基于稀疏表示的域适应技术,以便将其他现有用户的异常和正常信号投射到新用户的信号空间上,使我们能够训练专用的分类器而无需​​新用户的任何异常心跳。因此,无需合成异常的心跳产生,可以实现零射学习。在基准MIT-BIH ECG数据集上执行的一组大量实验表明,当该基于域的基于域的训练数据生成器与简单的1-D CNN分类器一起使用时,该方法以明显的差距优于先前的工作。 (iii)然后,通过组合(i)和(ii),我们提出了一个整体分类器,以进一步提高性能。这种零射门心律失常检测的方法的平均准确性水平为98.2%,F1得分为92.8%。最后,使用上述创新提出了一个个性化的节能ECG监测计划。
translated by 谷歌翻译
人工智能(AI)模型的黑框性质不允许用户理解和有时信任该模型创建的输出。在AI应用程序中,不仅结果,而且结果的决策路径至关重要,此类Black-Box AI模型还不够。可解释的人工智能(XAI)解决了此问题,并定义了用户可解释的一组AI模型。最近,有几种XAI模型是通过在医疗保健,军事,能源,金融和工业领域等各个应用领域的黑盒模型缺乏可解释性和解释性来解决有关的问题。尽管XAI的概念最近引起了广泛关注,但它与物联网域的集成尚未完全定义。在本文中,我们在物联网域范围内使用XAI模型对最近的研究进行了深入和系统的综述。我们根据其方法和应用领域对研究进行分类。此外,我们旨在专注于具有挑战性的问题和开放问题,并为未来的方向指导开发人员和研究人员进行未来的未来调查。
translated by 谷歌翻译
通过无线通信信道联合学习(FL),具体地,考虑过空中(OTA)模型聚合框架。在OTA无线设置中,通过增加参数服务器(PS)的接收天线的数量来缓解不利的通道效果,该参数服务器(PS)执行模型聚合。然而,OTA FL的性能受到远离PS远离PS的移动用户(MU)的存在限制。在本文中,为了减轻这种限制,我们提出了分层的超空气联合学习(HotaF1),它利用中介服务器(是)在Mus附近形成集群。我们为建议的设置提供了收敛性分析,并通过理论和实验结果证明了在全局聚集之前每个群集的局部聚合导致更好的性能和更快的收敛性比OTA FL更快。
translated by 谷歌翻译
我们对真正低资源语言的神经机翻译(NMT)进行了实证研究,并提出了一个训练课程,适用于缺乏并行培训数据和计算资源的情况,反映了世界上大多数世界语言和研究人员的现实致力于这些语言。以前,已经向低资源语言储存了使用后翻译(BT)和自动编码(AE)任务的无监督NMT。我们证明利用可比的数据和代码切换作为弱监管,与BT和AE目标相结合,即使仅使用适度的计算资源,低资源语言也会显着改进。在这项工作中提出的培训课程实现了Bleu分数,可通过+12.2 Bleu为古吉拉特和+3.7 Bleu为哈萨克斯培训的监督NMT培训,展示了弱势监督的巨大监督态度资源语言。在受到监督数据的培训时,我们的培训课程达到了索马里数据集(索马里29.3的BLEU的最先进的结果)。我们还观察到增加更多时间和GPU来培训可以进一步提高性能,强调报告在MT研究中的报告资源使用的重要性。
translated by 谷歌翻译
背景:虽然卷积神经网络(CNN)实现了检测基于磁共振成像(MRI)扫描的阿尔茨海默病(AD)痴呆的高诊断准确性,但它们尚未应用于临床常规。这是一个重要原因是缺乏模型可理解性。最近开发的用于导出CNN相关性图的可视化方法可能有助于填补这种差距。我们调查了具有更高准确性的模型还依赖于先前知识预定义的判别脑区域。方法:我们培训了CNN,用于检测痴呆症和Amnestic认知障碍(MCI)患者的N = 663 T1加权MRI扫描的AD,并通过交叉验证和三个独立样本验证模型的准确性= 1655例。我们评估了相关评分和海马体积的关联,以验证这种方法的临床效用。为了提高模型可理解性,我们实现了3D CNN相关性图的交互式可视化。结果:跨三个独立数据集,组分离表现出广告痴呆症与控制的高精度(AUC $ \ GEQUQ $ 0.92)和MCI与控制的中等精度(AUC $ \约0.75美元)。相关性图表明海马萎缩被认为是广告检测的最具信息性因素,其其他皮质和皮质区域中的萎缩额外贡献。海马内的相关评分与海马体积高度相关(Pearson的r $ \大约$ -0.86,p <0.001)。结论:相关性地图突出了我们假设先验的地区的萎缩。这加强了CNN模型的可理解性,这些模型基于扫描和诊断标签以纯粹的数据驱动方式培训。
translated by 谷歌翻译