Gathering properly labelled, adequately rich, and case-specific data for successfully training a data-driven or hybrid model for structural health monitoring (SHM) applications is a challenging task. We posit that a Transfer Learning (TL) method that utilizes available data in any relevant source domain and directly applies to the target domain through domain adaptation can provide substantial remedies to address this issue. Accordingly, we present a novel TL method that differentiates between the source's no-damage and damage cases and utilizes a domain adaptation (DA) technique. The DA module transfers the accumulated knowledge in contrasting no-damage and damage cases in the source domain to the target domain, given only the target's no-damage case. High-dimensional features allow employing signal processing domain knowledge to devise a generalizable DA approach. The Generative Adversarial Network (GAN) architecture is adopted for learning since its optimization process accommodates high-dimensional inputs in a zero-shot setting. At the same time, its training objective conforms seamlessly with the case of no-damage and damage data in SHM since its discriminator network differentiates between real (no damage) and fake (possibly unseen damage) data. An extensive set of experimental results demonstrates the method's success in transferring knowledge on differences between no-damage and damage cases across three strongly heterogeneous independent target structures. The area under the Receiver Operating Characteristics curves (Area Under the Curve - AUC) is used to evaluate the differentiation between no-damage and damage cases in the target domain, reaching values as high as 0.95. With no-damage and damage cases discerned from each other, zero-shot structural damage detection is carried out. The mean F1 scores for all damages in the three independent datasets are 0.978, 0.992, and 0.975.
translated by 谷歌翻译
当前文献中可用的卷积神经网络(CNN)方法旨在主要与低分辨率图像合作。当应用于非常大的图像时,与GPU记忆相关的挑战,比语义通信所需的较小的接受场以及需要结合多尺度特征的需求。但是,可以减少输入图像的分辨率,但要大量关键信息丢失。基于概述的问题,我们引入了一个新的研究问题,以培训CNN模型为非常大的图像,并介绍“超级数据集”,这是一个简单而代表性的基准数据集,用于此任务。 Ultramnist是使用流行的MNIST数字设计的,并添加了更多的复杂性,以很好地复制现实世界问题的挑战。我们提出了两个问题的两个变体:“超级分类”和“预算意识到的超级名人分类”。标准的超快分类基准旨在促进新型CNN培训方法的开发,从而有效利用最佳可用GPU资源。预算感知的变体旨在促进在受限GPU记忆下工作的方法的开发。为了开发竞争解决方案,我们为标准基准及其预算感知变体提供了几种基线模型。我们研究了减少分辨率对涉及流行最先进模型中预审预定型骨架的基线模型的性能的影响和目前的结果。最后,借助提出的基准数据集和基线,我们希望为新一代的CNN方法铺平地面,适合以有效和资源的方式处理大型图像。
translated by 谷歌翻译