分析运动表现或预防伤害需要捕获人体在某些运动中施加的地面反作用力(GRF)。标准实践在受控环境中使用与力板配对的物理标记,但这是由于高成本,冗长的实现时间和重复实验中的差异所破坏。因此,我们提出了视频中的GRF推论。尽管最近的工作使用LSTM从2D观点估算GRF,但它们的建模和表示能力可能受到限制。首先,我们建议使用变压器体系结构从视频任务中解决GRF,这是第一个这样做的。然后,我们引入了新的损失,以最大程度地减少回归曲线中的高影响峰。我们还表明,对2D到3D人类姿势估计的训练和多任务学习可以提高对看不见动作的概括。在此不同的任务上进行预训练时,在较小(稀有)GRF数据集上进行填充时,可以提供良好的初始权重。我们评估了Laas Parkour和新收集的钳子数据集;与先前的方法相比,我们出现的误差降低了19%。
translated by 谷歌翻译
Biometrics is the science of identifying an individual based on their intrinsic anatomical or behavioural characteristics, such as fingerprints, face, iris, gait, and voice. Iris recognition is one of the most successful methods because it exploits the rich texture of the human iris, which is unique even for twins and does not degrade with age. Modern approaches to iris recognition utilize deep learning to segment the valid portion of the iris from the rest of the eye, so it can then be encoded, stored and compared. This paper aims to improve the accuracy of iris semantic segmentation systems by introducing a novel data augmentation technique. Our method can transform an iris image with a certain dilation level into any desired dilation level, thus augmenting the variability and number of training examples from a small dataset. The proposed method is fast and does not require training. The results indicate that our data augmentation method can improve segmentation accuracy up to 15% for images with high pupil dilation, which creates a more reliable iris recognition pipeline, even under extreme dilation.
translated by 谷歌翻译
Video segmentation consists of a frame-by-frame selection process of meaningful areas related to foreground moving objects. Some applications include traffic monitoring, human tracking, action recognition, efficient video surveillance, and anomaly detection. In these applications, it is not rare to face challenges such as abrupt changes in weather conditions, illumination issues, shadows, subtle dynamic background motions, and also camouflage effects. In this work, we address such shortcomings by proposing a novel deep learning video segmentation approach that incorporates residual information into the foreground detection learning process. The main goal is to provide a method capable of generating an accurate foreground detection given a grayscale video. Experiments conducted on the Change Detection 2014 and on the private dataset PetrobrasROUTES from Petrobras support the effectiveness of the proposed approach concerning some state-of-the-art video segmentation techniques, with overall F-measures of $\mathbf{0.9535}$ and $\mathbf{0.9636}$ in the Change Detection 2014 and PetrobrasROUTES datasets, respectively. Such a result places the proposed technique amongst the top 3 state-of-the-art video segmentation methods, besides comprising approximately seven times less parameters than its top one counterpart.
translated by 谷歌翻译
Scene change detection is an image processing problem related to partitioning pixels of a digital image into foreground and background regions. Mostly, visual knowledge-based computer intelligent systems, like traffic monitoring, video surveillance, and anomaly detection, need to use change detection techniques. Amongst the most prominent detection methods, there are the learning-based ones, which besides sharing similar training and testing protocols, differ from each other in terms of their architecture design strategies. Such architecture design directly impacts on the quality of the detection results, and also in the device resources capacity, like memory. In this work, we propose a novel Multiscale Cascade Residual Convolutional Neural Network that integrates multiscale processing strategy through a Residual Processing Module, with a Segmentation Convolutional Neural Network. Experiments conducted on two different datasets support the effectiveness of the proposed approach, achieving average overall $\boldsymbol{F\text{-}measure}$ results of $\boldsymbol{0.9622}$ and $\boldsymbol{0.9664}$ over Change Detection 2014 and PetrobrasROUTES datasets respectively, besides comprising approximately eight times fewer parameters. Such obtained results place the proposed technique amongst the top four state-of-the-art scene change detection methods.
translated by 谷歌翻译
Research on remote sensing image classification significantly impacts essential human routine tasks such as urban planning and agriculture. Nowadays, the rapid advance in technology and the availability of many high-quality remote sensing images create a demand for reliable automation methods. The current paper proposes two novel deep learning-based architectures for image classification purposes, i.e., the Discriminant Deep Image Prior Network and the Discriminant Deep Image Prior Network+, which combine Deep Image Prior and Triplet Networks learning strategies. Experiments conducted over three well-known public remote sensing image datasets achieved state-of-the-art results, evidencing the effectiveness of using deep image priors for remote sensing image classification.
translated by 谷歌翻译
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign with the purpose of enabling a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the on-boarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.
translated by 谷歌翻译
Motivated by mitigating potentially harmful impacts of technologies, the AI community has formulated and accepted mathematical definitions for certain pillars of accountability: e.g. privacy, fairness, and model transparency. Yet, we argue this is fundamentally misguided because these definitions are imperfect, siloed constructions of the human values they hope to proxy, while giving the guise that those values are sufficiently embedded in our technologies. Under popularized methods, tensions arise when practitioners attempt to achieve each pillar of fairness, privacy, and transparency in isolation or simultaneously. In this position paper, we push for redirection. We argue that the AI community needs to consider all the consequences of choosing certain formulations of these pillars -- not just the technical incompatibilities, but also the effects within the context of deployment. We point towards sociotechnical research for frameworks for the latter, but push for broader efforts into implementing these in practice.
translated by 谷歌翻译
元学习是机器学习的一个分支,旨在将相关任务分布的数据合成以有效地解决新的数据。在过程控制中,许多系统具有相似且充分理解的动力学,这表明可以通过元学习创建可推广的控制器是可行的。在这项工作中,我们制定了一种元加强学习(META-RL)控制策略,该策略利用已知的离线信息进行培训,例如模型结构。对模型参数的分布而不是单个模型,对元RL代理进行了训练,从而使代理能够自动适应过程动力学的变化,同时保持性能。一个关键的设计元素是能够在培训期间离线利用基于模型的信息,同时保持与新环境交互的无模型策略结构。我们以前的工作已经证明了如何将这种方法应用于调整比例综合控制器以控制一阶过程的与工业相关的问题。在这项工作中,我们简要地重新引入了我们的方法,并证明了如何将其扩展到比例综合衍生的控制器和二阶系统。
translated by 谷歌翻译
我们将图形神经网络训练来自小工具N体模拟的光晕目录的神经网络,以执行宇宙学参数的无现场级别可能的推断。目录包含$ \ Lessim $ 5,000 HAROS带质量$ \ gtrsim 10^{10} 〜h^{ - 1} m_ \ odot $,定期卷为$(25〜H^{ - 1} {\ rm mpc}){\ rm mpc}) ^3 $;目录中的每个光环都具有多种特性,例如位置,质量,速度,浓度和最大圆速度。我们的模型构建为置换,翻译和旋转的不变性,不施加最低限度的规模来提取信息,并能够以平均值来推断$ \ omega _ {\ rm m} $和$ \ sigma_8 $的值$ \ sim6 \%$的相对误差分别使用位置加上速度和位置加上质量。更重要的是,我们发现我们的模型非常强大:他们可以推断出使用数千个N-n-Body模拟的Halo目录进行测试时,使用五个不同的N-进行测试时,在使用Halo目录进行测试时,$ \ omega _ {\ rm m} $和$ \ sigma_8 $身体代码:算盘,Cubep $^3 $ M,Enzo,PKDGrav3和Ramses。令人惊讶的是,经过培训的模型推断$ \ omega _ {\ rm m} $在对数千个最先进的骆驼水力动力模拟进行测试时也可以使用,该模拟使用四个不同的代码和子网格物理实现。使用诸如浓度和最大循环速度之类的光环特性允许我们的模型提取更多信息,而牺牲了模型的鲁棒性。这可能会发生,因为不同的N体代码不会在与这些参数相对应的相关尺度上收敛。
translated by 谷歌翻译
来自类似的心脏磁共振(CMR)图像的3D运动估计对于评估心脏功能和心血管疾病的诊断很重要。以前的大多数方法都侧重于估计完整图像空间中的像素 - /体素运动场,这忽略了运动估计主要是相关且在感兴趣的对象中有用的事实,例如心脏。在这项工作中,我们将心脏建模为3D几何网格,并提出了一种新型的基于深度学习的方法,该方法可以从2D短轴和长轴CMR图像中估算心脏网格的3D运动。通过开发可区分的网格到图像射击器,该方法能够利用2D多视图CMR图像的解剖形状信息进行3D运动估计。 Rasterizer的不同性使我们能够训练该方法最终到端。提出方法的一个优点是,通过跟踪每个顶点的运动,它可以保持时间帧之间3D网格的顶点对应关系,这对于对网格上心脏功能的定量评估很重要。我们评估了从英国生物银行研究获得的CMR图像的建议方法。实验结果表明,所提出的方法在定量和定性上都优于常规和基于学习的心脏运动跟踪方法。
translated by 谷歌翻译