Background samples provide key contextual information for segmenting regions of interest (ROIs). However, they always cover a diverse set of structures, causing difficulties for the segmentation model to learn good decision boundaries with high sensitivity and precision. The issue concerns the highly heterogeneous nature of the background class, resulting in multi-modal distributions. Empirically, we find that neural networks trained with heterogeneous background struggle to map the corresponding contextual samples to compact clusters in feature space. As a result, the distribution over background logit activations may shift across the decision boundary, leading to systematic over-segmentation across different datasets and tasks. In this study, we propose context label learning (CoLab) to improve the context representations by decomposing the background class into several subclasses. Specifically, we train an auxiliary network as a task generator, along with the primary segmentation model, to automatically generate context labels that positively affect the ROI segmentation accuracy. Extensive experiments are conducted on several challenging segmentation tasks and datasets. The results demonstrate that CoLab can guide the segmentation model to map the logits of background samples away from the decision boundary, resulting in significantly improved segmentation accuracy. Code is available.
translated by 谷歌翻译
随着计算能力已成为数字经济时代的核心生产力,计算和网络收敛的概念(CNC),根据用户的需求,可以动态地安排和分配网络和计算资源,并引起广泛关注。基于任务的属性,网络编排平面需要灵活地部署任务以适当计算节点并将路径安排到计算节点。这是一个涉及资源调度和路径布置的编排问题。由于CNC是相对较新的,因此在本文中,我们回顾了有关CNC的一些研究和应用。然后,我们使用强化学习(RL)设计了CNC编排方法,这是第一次尝试,可以灵活地分配和安排计算资源和网络资源。旨在高利润和低潜伏期。同时,我们使用多因素来确定优化目标,以便根据来自不同方面的总绩效(例如成本,利润,延迟和系统过载)在我们的实验中优化了编排策略。实验表明,与贪婪的方法,随机选择和平衡资源方法相比,提出的基于RL的方法可以实现更高的利润和更低的潜伏度。我们证明RL适合CNC编排。本文启动了RL关于CNC编排的应用程序。
translated by 谷歌翻译
深层模型的概率校准是在安全至关重要的应用(例如医学成像)中非常可取的。它通过将预测概率与测试数据中的实际准确性对齐,使深网的输出概率可解释。在图像分割中,精心校准的概率使放射科医生可以识别模型预测的分割不可靠的区域。这些不可靠的预测通常是由成像伪影或看不见的成像协议引起的室外(OOD)图像。不幸的是,大多数用于图像分割的先前校准方法在OOD图像上表现出色。为了减少面对OOD图像的校准误差,我们提出了一个新型的事后校准模型。我们的模型利用当地级别的扰动的像素敏感性以及在全球层面的形状先验信息。该模型在心脏MRI分割数据集上进行了测试,这些数据集包含来自看不见的成像协议中看不见的成像伪像和图像。与最新的校准算法相比,我们证明了校准误差减少。
translated by 谷歌翻译
胸部X射线(CXR)图像中的肺结节检测是肺癌的早期筛查。基于深度学习的计算机辅助诊断(CAD)系统可以支持放射线医生在CXR中进行结节筛选。但是,它需要具有高质量注释的大规模和多样化的医学数据,以训练这种强大而准确的CAD。为了减轻此类数据集的有限可用性,为了增加数据增强而提出了肺结核合成方法。然而,以前的方法缺乏产生结节的能力,这些结节与检测器所需的大小属性相关。为了解决这个问题,我们在本文中介绍了一种新颖的肺结综合框架,该框架分别将结节属性分为三个主要方面,包括形状,大小和纹理。基于GAN的形状生成器首先通过产生各种形状掩模来建模结节形状。然后,以下大小调制可以对像素级粒度中生成的结节形状的直径进行定量控制。一条粗到细门的卷积卷积纹理发生器最终合成了以调制形状掩模为条件的视觉上合理的结节纹理。此外,我们建议通过控制数据增强的分离结节属性来合成结节CXR图像,以便更好地补偿检测任务中容易错过的结节。我们的实验证明了所提出的肺结构合成框架的图像质量,多样性和可控性的增强。我们还验证了数据增强对大大改善结节检测性能的有效性。
translated by 谷歌翻译
深度学习已被证明可以准确评估“隐藏”表型,并从传统临床医生对医学成像的解释之外的医学成像中预测生物标志物。鉴于人工智能(AI)模型的黑匣子性质,应在将模型应用于医疗保健时谨慎,因为预测任务可能会因疾病和患者人群的人口统计学差异而短路。使用来自两个医疗保健系统的大超声心动图数据集,我们测试使用深度学习算法从心脏超声图像中预测年龄,种族和性别,并评估各种混杂变量的影响。我们培训了基于视频的卷积神经网络,以预测年龄,性别和种族。我们发现,深度学习模型能够确定年龄和性别,同时无法可靠地预测种族。不考虑类别之间的混淆差异,AI模型预测性别为0.85(95%CI 0.84-0.86),年龄为9.12年的平均绝对误差为9.12年(95%CI 9.00-9.25),从AUC进行竞赛, 0.63-0.71。在预测种族时,我们表明,在培训数据中调整混杂变量(性别)的比例会显着影响AUC(从0.57到0.84),而在训练性别预测模型中,调整混杂因素(Race)并未实质性更改AUC(0.81-0.83)。这表明该模型在预测种族方面的表现很大一部分可能来自AI检测到的混杂功能。进一步的工作仍然是确定与人口统计信息相关的特定成像功能,并更好地了解医学AI中人口统计学识别的风险,因为它与潜在的偏见和差异有关。
translated by 谷歌翻译
卷积神经网络(CNN)在基准数据集上实现了出色的分割精度,在该数据集中,训练和测试集来自同一领域,但它们的性能可以大大降低看不见的域,这阻碍了CNN在许多临床场景中的部署。大多数现有作品通过收集多域数据集进行培训来改善模型外(OOD)的鲁棒性,这很昂贵,由于隐私和后勤问题,这很昂贵,可能并不总是可行的。在这项工作中,我们专注于仅使用单域数据集提高模型鲁棒性。我们提出了一个名为MaxStyle的新型数据增强框架,该框架最大程度地提高了模型OOD性能的样式增强功能。它将辅助风格的图像解码器附加到用于鲁棒特征学习和数据增强的分割网络。重要的是,MaxStyle通过通过噪音扩大样式空间并通过对抗性训练来扩大样式空间并搜索潜在特征的最差案例样式组成,从而增强了图像样式多样性和硬度的增强数据。通过对多个公共心脏和前列腺MR数据集进行了广泛的实验,我们证明了MaxStyle可显着改善对看不见的腐败的稳健性,以及在两个低 - 不知名的位点和未知的图像序列之间的共同分布变化以及共同的分布变化。和高训练数据设置。可以在https://github.com/cherise215/maxstyle上找到该代码。
translated by 谷歌翻译
我们考虑临床应用异常定位问题。虽然深入学习推动了最近的医学成像进展,但许多临床挑战都没有完全解决,限制了其更广泛的使用。虽然最近的方法报告了高的诊断准确性,但医生因普遍缺乏算法决策和解释性而涉及诊断决策的这些算法,这是关注这些算法。解决这个问题的一种潜在方法是进一步培训这些模型,以便除了分类它们之外,除了分类。然而,准确地进行这一临床专家需要大量的疾病定位注释,这是对大多数应用程序来实现昂贵的任务。在这项工作中,我们通过一种新的注意力弱监督算法来解决这些问题,该弱势监督算法包括分层关注挖掘框架,可以以整体方式统一激活和基于梯度的视觉关注。我们的关键算法创新包括明确序号注意约束的设计,实现了以弱监督的方式实现了原则的模型培训,同时还通过本地化线索促进了产生视觉关注驱动的模型解释。在两个大型胸部X射线数据集(NIH Chescx-Ray14和Chexpert)上,我们展示了对现有技术的显着本地化性能,同时也实现了竞争的分类性能。我们的代码可在https://github.com/oyxhust/ham上找到。
translated by 谷歌翻译
深度学习模型通常遭受域移位问题,其中一个源域培训的模型不会概括到其他看不见的域。在这项工作中,我们调查了单源域泛化问题:培训一个深入的网络,在训练数据仅从一个源域中获得的训练数据中的条件,这是在医学成像应用程序中常见的情况下。我们在跨域医学图像分割的背景下解决这个问题。在这种情况下,域移主要由不同的采集过程引起。我们提出了一种简单的因果关系激发数据增强方法,使分段模型暴露于合成域移位的训练示例。具体而言,1)使得深度模型在图像强度和纹理中的差异差异,我们采用了一系列随机加权浅网络。他们使用不同的外观变换来增强训练图像。 2)此外,我们表明图像中物体之间的虚假相关性对域的鲁棒性有害。网络可能被网络作为特定于域的线索进行预测的相关性,并且它们可能会破坏看不见的域。我们通过因果干预删除这些杂散相关性。这是通过分层潜在相关对象的外表来实现的。所提出的方法在三个横域分割任务上验证:跨型号(CT-MRI)腹部图像分割,串序(BSSFP-LGE)心动MRI分割和跨中心前列腺MRI分段。当在看不见的域测试时,所提出的方法与竞争方法相比,与竞争方法相比产生一致的性能。
translated by 谷歌翻译
病变检测是乳房X线照相术的计算机辅助诊断方案中的一个基本问题。如果培训数据在图像风格和质量方面,深度学习技术的进步对这项任务产生了显着的进展。特别地,图像样式的多样性可能主要归因于供应商因子。然而,尽可能多的供应商收集来自供应商的非常昂贵,并且有时对于实验室规模研究是不切实际的。因此,为了进一步将深度学习模型的泛化能力扩展到具有有限资源有限的各种供应商,开发了一种新的对比学习方案。具体地,骨干网络首先具有多种式和多视图无监督的自学习方案,用于将不变功能嵌入到各种供应商样式中。之后,用特定的监督学习重新校准骨干网络与病变检测的下游任务。所提出的方法是用来自四个供应商的乳房X线照片和一个看不见的公共数据集进行评估。实验结果表明,我们的方法可以有效地改善观察和看不见的域的检测性能,并且优于许多最先进的(SOTA)泛化方法。
translated by 谷歌翻译
神经网络在医疗图像分割任务上的成功通常依赖于大型标记的数据集用于模型培训。但是,由于数据共享和隐私问题,获取和手动标记大型医疗图像集是资源密集的,昂贵的,有时是不切实际的。为了应对这一挑战,我们提出了一个通用的对抗数据增强框架Advchain,旨在提高培训数据对医疗图像分割任务的多样性和有效性。 AdvChain通过动态数据增强来增强数据,从而产生随机链接的光线像和几何转换,以类似于现实而又具有挑战性的成像变化以扩展训练数据。通过在培训期间共同优化数据增强模型和分割网络,可以生成具有挑战性的示例,以增强下游任务的网络可推广性。所提出的对抗数据增强不依赖生成网络,可以用作通用分割网络中的插件模块。它在计算上是有效的,适用于低声监督和半监督学习。我们在两个MR图像分割任务上分析和评估该方法:心脏分割和前列腺分割具有有限的标记数据。结果表明,所提出的方法可以减轻对标记数据的需求,同时提高模型泛化能力,表明其在医学成像应用中的实际价值。
translated by 谷歌翻译