Online media data, in the forms of images and videos, are becoming mainstream communication channels. However, recent advances in deep learning, particularly deep generative models, open the doors for producing perceptually convincing images and videos at a low cost, which not only poses a serious threat to the trustworthiness of digital information but also has severe societal implications. This motivates a growing interest of research in media tampering detection, i.e., using deep learning techniques to examine whether media data have been maliciously manipulated. Depending on the content of the targeted images, media forgery could be divided into image tampering and Deepfake techniques. The former typically moves or erases the visual elements in ordinary images, while the latter manipulates the expressions and even the identity of human faces. Accordingly, the means of defense include image tampering detection and Deepfake detection, which share a wide variety of properties. In this paper, we provide a comprehensive review of the current media tampering detection approaches, and discuss the challenges and trends in this field for future research.
translated by 谷歌翻译
During the deployment of deep neural networks (DNNs) on edge devices, many research efforts are devoted to the limited hardware resource. However, little attention is paid to the influence of dynamic power management. As edge devices typically only have a budget of energy with batteries (rather than almost unlimited energy support on servers or workstations), their dynamic power management often changes the execution frequency as in the widely-used dynamic voltage and frequency scaling (DVFS) technique. This leads to highly unstable inference speed performance, especially for computation-intensive DNN models, which can harm user experience and waste hardware resources. We firstly identify this problem and then propose All-in-One, a highly representative pruning framework to work with dynamic power management using DVFS. The framework can use only one set of model weights and soft masks (together with other auxiliary parameters of negligible storage) to represent multiple models of various pruning ratios. By re-configuring the model to the corresponding pruning ratio for a specific execution frequency (and voltage), we are able to achieve stable inference speed, i.e., keeping the difference in speed performance under various execution frequencies as small as possible. Our experiments demonstrate that our method not only achieves high accuracy for multiple models of different pruning ratios, but also reduces their variance of inference latency for various frequencies, with minimal memory consumption of only one model and one soft mask.
translated by 谷歌翻译
In this work, we propose MEDICO, a Multi-viEw Deep generative model for molecule generation, structural optimization, and the SARS-CoV-2 Inhibitor disCOvery. To the best of our knowledge, MEDICO is the first-of-this-kind graph generative model that can generate molecular graphs similar to the structure of targeted molecules, with a multi-view representation learning framework to sufficiently and adaptively learn comprehensive structural semantics from targeted molecular topology and geometry. We show that our MEDICO significantly outperforms the state-of-the-art methods in generating valid, unique, and novel molecules under benchmarking comparisons. In particular, we showcase the multi-view deep learning model enables us to generate not only the molecules structurally similar to the targeted molecules but also the molecules with desired chemical properties, demonstrating the strong capability of our model in exploring the chemical space deeply. Moreover, case study results on targeted molecule generation for the SARS-CoV-2 main protease (Mpro) show that by integrating molecule docking into our model as chemical priori, we successfully generate new small molecules with desired drug-like properties for the Mpro, potentially accelerating the de novo design of Covid-19 drugs. Further, we apply MEDICO to the structural optimization of three well-known Mpro inhibitors (N3, 11a, and GC376) and achieve ~88% improvement in their binding affinity to Mpro, demonstrating the application value of our model for the development of therapeutics for SARS-CoV-2 infection.
translated by 谷歌翻译
Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 42 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
This paper addresses the quality issues in existing Twitter-based paraphrase datasets, and discusses the necessity of using two separate definitions of paraphrase for identification and generation tasks. We present a new Multi-Topic Paraphrase in Twitter (MultiPIT) corpus that consists of a total of 130k sentence pairs with crowdsoursing (MultiPIT_crowd) and expert (MultiPIT_expert) annotations using two different paraphrase definitions for paraphrase identification, in addition to a multi-reference test set (MultiPIT_NMR) and a large automatically constructed training set (MultiPIT_Auto) for paraphrase generation. With improved data annotation quality and task-specific paraphrase definition, the best pre-trained language model fine-tuned on our dataset achieves the state-of-the-art performance of 84.2 F1 for automatic paraphrase identification. Furthermore, our empirical results also demonstrate that the paraphrase generation models trained on MultiPIT_Auto generate more diverse and high-quality paraphrases compared to their counterparts fine-tuned on other corpora such as Quora, MSCOCO, and ParaNMT.
translated by 谷歌翻译
电子商务查询通常简短而模棱两可。因此,查询理解通常使用查询重写来消除用户输入查询。在使用电子商务搜索工具时,用户倾向于在购买之前输入多个搜索,我们称之为上下文。这些历史搜索包含有关用户真正购物意图的上下文见解。因此,对此类上下文信息进行建模对于更好的查询重写模型至关重要。但是,现有的查询重写模型忽略了用户的历史行为,而仅考虑即时搜索查询,这通常是一个简短的字符串,提供有关真实购物意图的有限信息。我们建议一个端到端的上下文感知查询重写模型来弥合此差距,从而考虑了搜索上下文。具体而言,我们的模型使用历史记录搜索查询及其包含的单词构建了会话图。然后,我们采用图形注意机制,该机制对交叉关系进行建模并计算会话的上下文信息。随后,模型通过使用聚合网络将上下文信息与即时搜索查询组合来计算会话表示。然后将会话表示形式解码以生成重写的查询。从经验上讲,我们证明了我们方法对各种指标下最先进的方法的优越性。在从线购物平台的内部数据上,通过介绍上下文信息,我们的模型在MRR(平均值等级)指标下取得了11.6%的改善,并在HIT@16度量指标(命中率指标)下提高了20.1%使用最佳基线方法(基于变压器的模型)。
translated by 谷歌翻译
在分布式深度学习的背景下,陈旧的权重或梯度的问题可能导致算法性能差。这个问题通常通过延迟耐受算法来解决,并在目标函数和步进尺寸上有一些温和的假设。在本文中,我们提出了一种不同的方法来开发一种新算法,称为$ \ textbf {p} $ redicting $ \ textbf {c} $ lipping $ \ textbf {a} $ synchronous $ \ textbf {s} textbf {g} $ radient $ \ textbf {d} $ escent(aka,pc-asgd)。具体而言,PC -ASGD有两个步骤 - $ \ textIt {预测步骤} $利用泰勒扩展利用梯度预测来减少过时的权重的稳固性,而$ \ textit {clivipping step} $选择性地降低了过时的权重,以减轻过时的权重他们的负面影响。引入权衡参数以平衡这两个步骤之间的影响。从理论上讲,考虑到平滑的物镜函数弱键和非凸的延迟延迟的延迟,我们介绍了收敛速率。还提出了一种实用的PC-ASGD变体,即采用条件来帮助确定权衡参数。对于经验验证,我们在两个基准数据集上使用两个深神经网络体系结构演示了该算法的性能。
translated by 谷歌翻译
及时调整是将预训练的语言模型调整为下游任务的一种新兴方法。但是,现有的研究主要是为输入序列增加提示。由于中间多头自我注意和馈送网络计算,因此这种方式无法正常工作,从而使模型优化不是很好。因此,我们提出了一种称为“图层调整”的新颖调整方式,旨在在变压器层中添加可学习的参数。具体而言,我们专注于变压器中的馈电网络的图层调整,即FLANing。它将其他单元引入每个馈送网络的隐藏层。我们对公共线索基准进行了广泛的实验。结果表明:1)在几乎所有情况下,我们的FL-tuning tospormports促进了全数据和少量设置下的调整方法。特别是,它在WSC 1.0上的准确性提高了17.93%(全数据设置),而F1上的精度则提高了P-Tuning V2上的Cluener上的精度(几乎没有射击设置)。 2)我们的FL-调整更稳定,收敛速度比P-Tuning V2快约1.17倍。 3)只有大约3%的变压器参数要训练,因此在大多数数据集中进行了微调,并且在几个数据集上的微调(例如,WSC 1.1上的准确性提高了12.9%)。源代码可从https://github.com/genggui001/fl-tuning获得。
translated by 谷歌翻译
在肺结节的管理中,我们希望根据其在计算机断层扫描(CT)扫描的直径变化方面预测结节的演变,然后根据结节不断增长的趋势的预测结果提供后续建议。为了提高肺结节增长趋势预测的性能,与连续CT扫描中相同结节的变化进行比较至关重要。在此激励的情况下,我们从国家肺筛查试验(NLST)数据集进行了两次以上的CT扫描,筛选了4,666名受试者,以组织一个名为NLSTT的颞数据集。在具体上,我们首先检测并配对感兴趣的区域(ROI),该区域涵盖了基于注册的CT扫描的相同结节。之后,我们通过模型预测结节的纹理类别和直径大小。最后,我们根据直径的变化来注释每个结节的演化类别。基于构建的NLSTT数据集,我们建议一个暹罗编码器同时利用从连续的CT扫描中检测到的3D ROI的判别特征。然后,我们在新小时设计一个时空混合器(STM)来利用连续3D ROI中同一结节的间隔变化,并捕获结节区域的空间依赖性和当前的3D ROI。根据临床诊断常规,我们采用层次损失来更多地关注生长的结节。我们有组织的数据集上的广泛实验证明了我们提出的方法的优势。我们还对内部数据集进行了实验,以通过将其与熟练的临床医生进行比较来评估我们方法的临床实用性。
translated by 谷歌翻译