在本文中,我们研究了通过减少优化难度来改善对抗性训练(AT)获得的对抗性鲁棒性。为了更好地研究这个问题,我们为AT建立了一个新颖的Bregman Divergence观点,其中可以将其视为负熵曲线上训练数据点的滑动过程。基于这个观点,我们分析了方法(即PGD-AT和Trades)的两个典型方法的学习目标,并且我们发现交易的优化过程比PGD-AT更容易,而PGD-AT则将PGD-AT分开。此外,我们讨论了熵在贸易中的功能,我们发现具有高熵的模型可以是更好的鲁棒性学习者。受到上述发现的启发,我们提出了两种方法,即伪造和MER,它们不仅可以减少10步PGD对手下优化的难度,而且还可以提供更好的鲁棒性。我们的工作表明,在10步PGD对手下减少优化的难度是增强AT中对抗性鲁棒性的一种有前途的方法。
translated by 谷歌翻译
视觉语言导航(VLN)任务要求代理商通过自然语言指令的指导到达目标。以前的作品学会在指令后逐步导航。然而,这些作品可能无法歧视跨指令轨迹对的相似性和差异,并忽略子指令的时间连续性。这些问题妨碍了代理人学习独特的视觉和语言表示,损害了导航政策的稳健性和普遍性。在本文中,我们提出了一种对比的指令轨迹学习(Citl)框架,探讨了不同数据样本的不变性,而不同的数据样本和方差以学习强大导航的独特表示。具体而言,我们提出:(1)通过分别对比完整轨迹观测和指示的语义来提高视觉和语言表示来提高视觉和语言。 (2)细粒度对比学学习目的,通过利用子指示的时间信息来感知指示; (3)对矿井硬样品对比学学习的成对采样重量机制,从而减轻了数据采样偏差在对比学习中的影响。我们的Citl可以轻松地与VLN骨干网集成,形成新的学习范例,并在看不见的环境中实现更好的普遍性。广泛的实验表明,Citl的模型超越了R2R,R4R和RXR上以前的最先进的方法。
translated by 谷歌翻译
在线算法是算法设计中的重要分支。设计具有有界竞争比率的在线算法(在最坏情况性能方面)可能是艰难的并且通常依赖于特定于问题的假设。由生成对抗净净净(GAN)的对抗训练的启发和在线算法的竞争比率基于最坏情况的输入,我们采用深度神经网络来学习从头开始进行资源分配和定价问题的在线算法对于最坏情况的输入,可以最小化离线最佳和学习的在线算法之间的性能差距的目标。具体而言,我们分别利用两个神经网络作为算法和对手,让他们播放零和游戏,而对验证负责产生最坏情况的输入,而算法基于对手提供的输入学习最佳策略。为了确保算法网络的更好收敛(到所需的在线算法),我们提出了一种新颖的每轮更新方法来处理顺序决策,以便在不同的回合中断复杂依赖性,以便可以为每种可能的动作完成更新,而不是只有采样的行动。据我们所知,我们的作品是首次使用深度神经网络来设计一个在最坏情况性能保证的角度的在线算法。实证研究表明,我们的更新方法确保了纳什均衡的融合,并且学习算法在各种设置下优于最先进的在线算法。
translated by 谷歌翻译
卷积神经网络(CNNS)用于许多现实世界应用,例如基于视觉的自主驾驶和视频内容分析。要在各种目标设备上运行CNN推断,硬件感知神经结构搜索(NAS)至关重要。有效的硬件感知NAS的关键要求是对推理延迟的快速评估,以便对不同的架构进行排名。在构建每个目标设备的延迟预测器的同时,在本领域中通常使用,这是一个非常耗时的过程,在极定的设备存在下缺乏可扩展性。在这项工作中,我们通过利用延迟单调性来解决可扩展性挑战 - 不同设备上的架构延迟排名通常相关。当存在强烈的延迟单调性时,我们可以重复使用在新目标设备上搜索一个代理设备的架构,而不会丢失最佳状态。在没有强烈的延迟单调性的情况下,我们提出了一种有效的代理适应技术,以显着提高延迟单调性。最后,我们验证了我们的方法,并在多个主流搜索空间上使用不同平台的设备进行实验,包括MobileNet-V2,MobileNet-V3,NAS-Bench-201,Proxylessnas和FBNet。我们的结果突出显示,通过仅使用一个代理设备,我们可以找到几乎与现有的每个设备NAS相同的帕累托最优架构,同时避免为每个设备构建延迟预测器的禁止成本。 github:https://github.com/ren-research/oneproxy.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations.
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译