Given a natural language that describes the user's demands, the NL2Code task aims to generate code that addresses the demands. This is a critical but challenging task that mirrors the capabilities of AI-powered programming. The NL2Code task is inherently versatile, diverse and complex. For example, a demand can be described in different languages, in different formats, and at different levels of granularity. This inspired us to do this survey for NL2Code. In this survey, we focus on how does neural network (NN) solves NL2Code. We first propose a comprehensive framework, which is able to cover all studies in this field. Then, we in-depth parse the existing studies into this framework. We create an online website to record the parsing results, which tracks existing and recent NL2Code progress. In addition, we summarize the current challenges of NL2Code as well as its future directions. We hope that this survey can foster the evolution of this field.
translated by 谷歌翻译
对接系统对于在线多人游戏中创建公平匹配至关重要,这直接影响玩家的满足感和游戏体验。大多数对接系统在很大程度上取决于对玩家游戏技能的精确估计来构建公平的游戏。但是,新手的技能等级通常是不准确的,因为当前的对接评级算法需要大量游戏才能学习新玩家的真正技能。在早期阶段使用这些不可靠的技能得分通常会导致团队绩效方面的差异,这会导致负面的游戏体验。这被称为对接评级算法的“冷启动”问题。为了克服这个难题,本文提出了QuickSkill,这是一个基于深度学习的新手技能估算框架,以快速探究在线多人游戏中新玩家的能力。 QuickSkill提取了玩家最初的几款游戏中的顺序性能功能,以通过专用的神经网络来预测他/她的未来技能评级,从而在玩家的早期游戏阶段进行准确的技能估计。通过使用Quickskill进行对接,可以在最初的冷门时期大大改善游戏公平性。我们在离线和在线场景中都在流行的移动多人游戏中进行实验。使用两个现实世界中的匿名游戏数据集获得的结果表明,提议的QuickSkill提供了对新手游戏技能的精确估计,从而导致团队技能差异明显降低和更好的玩家游戏体验。据我们所知,提议的Quickskill是第一个解决传统技能评级算法的冷门问题的框架。
translated by 谷歌翻译
尽管现有的机器阅读理解模型在许多数据集上取得了迅速的进展,但它们远非强劲。在本文中,我们提出了一个面向理解的机器阅读理解模型,以解决三种鲁棒性问题,这些问题过于敏感,稳定性和泛化。具体而言,我们首先使用自然语言推理模块来帮助模型了解输入问题的准确语义含义,以解决过度敏感性和稳定性的问题。然后,在机器阅读理解模块中,我们提出了一种记忆引导的多头注意方法,该方法可以进一步很好地理解输入问题和段落的语义含义。第三,我们提出了一种多语言学习机制来解决概括问题。最后,这些模块与基于多任务学习的方法集成在一起。我们在三个旨在衡量模型稳健性的基准数据集上评估了我们的模型,包括Dureader(健壮)和两个与小队相关的数据集。广泛的实验表明,我们的模型可以很好地解决上述三种鲁棒性问题。而且,即使在某些极端和不公平的评估下,它也比所有这些数据集中所有这些数据集的最先进模型的结果要好得多。我们工作的源代码可在以下网址获得:https://github.com/neukg/robustmrc。
translated by 谷歌翻译
超声检查是乳腺癌诊断的重要常规检查,这是由于其无创,无辐射和低成本的特性。但是,由于其固有的局限性,乳腺癌的诊断准确性仍然受到限制。如果我们可以通过乳房超声图像(BUS)精确诊断乳腺癌,那将是一个巨大的成功。已经提出了许多基于学习的计算机辅助诊断方法来实现乳腺癌诊断/病变分类。但是,其中大多数需要预定的ROI,然后对ROI内的病变进行分类。常规的分类骨架,例如VGG16和RESNET50,可以在没有ROI要求的情况下获得有希望的分类结果。但是这些模型缺乏解释性,因此限制了它们在临床实践中的使用。在这项研究中,我们提出了一种具有可解释特征表示的超声图像中乳腺癌诊断的新型无ROI模型。我们利用解剖学的先验知识,即恶性肿瘤和良性肿瘤在不同的组织层之间具有不同的空间关系,并提出了悬停转换器来提出这种先验知识。提出的悬停式跨界块水平和垂直地提取层间和层内空间信息。我们进行并释放一个开放的数据集GDPH&SYSUCC,以用于公共汽车中的乳腺癌诊断。通过与四个基于CNN的模型和两个Vision Transformer模型进行比较,通过五倍的交叉验证来评估所提出的模型。它通过最佳模型可解释性实现最新的分类性能。同时,我们提出的模型在仅给出一张公交图像时,在乳腺癌诊断方面优于两名高级超声检查员。
translated by 谷歌翻译
磁共振图像(MRI)中的脑肿瘤分割(BTS)对于脑肿瘤诊断,癌症管理和研究目的至关重要。随着十年小型挑战的巨大成功以及CNN和Transformer算法的进步,已经提出了许多出色的BTS模型来解决BTS在不同技术方面的困难。但是,现有研究几乎没有考虑如何以合理的方式融合多模式图像。在本文中,我们利用了放射科医生如何从多种MRI模态诊断脑肿瘤的临床知识,并提出了一种称为CKD-TRANSBTS的临床知识驱动的脑肿瘤分割模型。我们没有直接串联所有模式,而是通过根据MRI的成像原理将输入方式分为两组来重新组织输入方式。具有拟议模态相关的跨意义块(MCCA)的双支支混合式编码器旨在提取多模式图像特征。所提出的模型以局部特征表示能力的能力来继承来自变压器和CNN的强度,以提供精确的病变边界和3D体积图像的远程特征提取。为了弥合变压器和CNN功能之间的间隙,我们提出了解码器中的反式和CNN功能校准块(TCFC)。我们将提出的模型与五个基于CNN的模型和六个基于Transformer的模型在Brats 2021挑战数据集上进行了比较。广泛的实验表明,与所有竞争对手相比,所提出的模型可实现最先进的脑肿瘤分割性能。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译