The monitoring of machine conditions in a plant is crucial for production in manufacturing. A sudden failure of a machine can stop production and cause a loss of revenue. The vibration signal of a machine is a good indicator of its condition. This paper presents a dataset of vibration signals from a lab-scale machine. The dataset contains four different types of machine conditions: normal, unbalance, misalignment, and bearing fault. Three machine learning methods (SVM, KNN, and GNB) evaluated the dataset, and a perfect result was obtained by one of the methods on a 1-fold test. The performance of the algorithms is evaluated using weighted accuracy (WA) since the data is balanced. The results show that the best-performing algorithm is the SVM with a WA of 99.75\% on the 5-fold cross-validations. The dataset is provided in the form of CSV files in an open and free repository at https://zenodo.org/record/7006575.
translated by 谷歌翻译
持续学习(CL,有时也称为增量学习)是机器学习的一种味道,在该口味中,通常会放松或省略固定数据分布的通常假设。当天然应用时,例如CL问题中的DNNS时,数据分布的变化会导致所谓的灾难性遗忘(CF)效应:突然丧失了先前的知识。尽管近年来已经为启用CL做出了许多重大贡献,但大多数作品都解决了受监督的(分类)问题。本文回顾了在其他环境中研究CL的文献,例如通过减少监督,完全无监督的学习和强化学习的学习。除了提出一个简单的模式用于分类CL方法W.R.T.他们的自主权和监督水平,我们讨论了与每种设置相关的具体挑战以及对CL领域的潜在贡献。
translated by 谷歌翻译
我们介绍了一项关于在增强学习(RL)方案中使用持续学习(CL)方法的实证研究,据我们所知,该方法以前尚未描述。 CL是一个非常活跃的研究主题,与非平稳数据分布下的机器学习有关。尽管这自然适用于RL,但使用专用CL方法仍然很少见。这可能是由于以下事实:CL方法通常将CL问题分解为固定分布的不结合子任务,即这些子任务的发作是已知的,并且子任务是非矛盾的。在这项研究中,我们对RL问题中选定的CL方法进行了经验比较,在RL问题中,物理模拟的机器人必须按照视力遵循赛马场。为了使CL方法适用,我们限制了RL设置,并引入了已知发作的非冲突子任务,但是,它们并不脱节,并且从学习者的角度来看,其分布仍然非平稳。我们的结果表明,与“经验重播”的基线技术相比,专用的CL方法可以显着改善学习。
translated by 谷歌翻译