我们在凸优化和深度学习的界面上引入了一类新的迭代图像重建算法,以启发凸出和深度学习。该方法包括通过训练深神网络(DNN)作为Denoiser学习先前的图像模型,并将其替换为优化算法的手工近端正则操作员。拟议的airi(``````````````''''')框架,用于成像复杂的强度结构,并从可见性数据中扩散和微弱的发射,继承了优化的鲁棒性和解释性,以及网络的学习能力和速度。我们的方法取决于三个步骤。首先,我们从光强度图像设计了一个低动态范围训练数据库。其次,我们以从数据的信噪比推断出的噪声水平来训练DNN Denoiser。我们使用训练损失提高了术语,可确保算法收敛,并通过指示进行即时数据库动态范围增强。第三,我们将学习的DeNoiser插入前向后的优化算法中,从而产生了一个简单的迭代结构,该结构与梯度下降的数据输入步骤交替出现Denoising步骤。我们已经验证了SARA家族的清洁,优化算法的AIRI,并经过DNN训练,可以直接从可见性数据中重建图像。仿真结果表明,AIRI与SARA及其基于前卫的版本USARA具有竞争力,同时提供了显着的加速。干净保持更快,但质量较低。端到端DNN提供了进一步的加速,但质量远低于AIRI。
translated by 谷歌翻译
The challenges of collecting medical data on neurological disorder diagnosis problems paved the way for learning methods with scarce number of samples. Due to this reason, one-shot learning still remains one of the most challenging and trending concepts of deep learning as it proposes to simulate the human-like learning approach in classification problems. Previous studies have focused on generating more accurate fingerprints of the population using graph neural networks (GNNs) with connectomic brain graph data. Thereby, generated population fingerprints named connectional brain template (CBTs) enabled detecting discriminative bio-markers of the population on classification tasks. However, the reverse problem of data augmentation from single graph data representing brain connectivity has never been tackled before. In this paper, we propose an augmentation pipeline in order to provide improved metrics on our binary classification problem. Divergently from the previous studies, we examine augmentation from a single population template by utilizing graph-based generative adversarial network (gGAN) architecture for a classification problem. We benchmarked our proposed solution on AD/LMCI dataset consisting of brain connectomes with Alzheimer's Disease (AD) and Late Mild Cognitive Impairment (LMCI). In order to evaluate our model's generalizability, we used cross-validation strategy and randomly sampled the folds multiple times. Our results on classification not only provided better accuracy when augmented data generated from one sample is introduced, but yields more balanced results on other metrics as well.
translated by 谷歌翻译
图形神经网络(GNNS)在包括田野医学成像和网络神经科学在内的各个领域都取得了非凡的增强,在诊断自闭症等挑战性神经系统疾病方面,它们表现出很高的准确性。面对医学数据稀缺性和高度私人性,培训此类渴望数据的模型仍然具有挑战性。联合学习通过允许在多个数据集上培训模型,以完全保存数据的方式来独立收集,从而为该问题提供了有效的解决方案。尽管最先进的GNN和联合学习技术都侧重于提高分类准确性,但它们忽略了一个关键的未解决问题:研究GNN模型中最歧视性生物标志物(即功能)的可重复性(即功能),在联合学习范式中选择。量化预测医学模型的可重复性,以防止培训和测试数据分布的扰动,这是克服转化临床应用时要克服的最大障碍之一。据我们所知,这介绍了第一批研究联合GNN模型的可重复性,并应用了对医学成像和大脑连接数据集进行分类的应用。我们使用对医学成像和连接数据集训练的各种GNN模型评估了我们的框架。更重要的是,我们表明联邦学习可以提高GNN模型在此类医学学习任务中的准确性和可重复性。我们的源代码可在https://github.com/basiralab/reproduciblefedgnn上获得。
translated by 谷歌翻译