音乐源分离表示从给定歌曲中提取所有乐器的任务。近期对这一挑战的突破已经陷入了单一数据集,MusdB,仅限于四个仪器类。更大的数据集和更多乐器在收集数据和培训深度神经网络(DNN)时是昂贵和耗时的。在这项工作中,我们提出了一种快速的方法来评估任何数据集中的仪器在任何数据集中的可分离性,而不会训练和调整DNN。这种可分离性测量有助于选择适当的样本以获得神经网络的有效培训。基于Oracle原理与理想的比率面具,我们的方法是估计最先进的深度学习方法(如TASNet或Open-Unmix)的分离性能的优异代理。我们的结果有助于揭示音频源分离的两个基本要点:1)理想的比率掩模,虽然光线和简单,提供了最近神经网络的音频可分子性能的准确度量,以及2)新的端到端学习方法如TASNet,它直接在波形上运行,实际上是在内部构建时频(TF)表示,使得它们在分离在TF平面中重叠的音频模式时,它们遇到与基于TF的方法相同的限制。
translated by 谷歌翻译
The receptive field (RF), which determines the region of time series to be ``seen'' and used, is critical to improve the performance for time series classification (TSC). However, the variation of signal scales across and within time series data, makes it challenging to decide on proper RF sizes for TSC. In this paper, we propose a dynamic sparse network (DSN) with sparse connections for TSC, which can learn to cover various RF without cumbersome hyper-parameters tuning. The kernels in each sparse layer are sparse and can be explored under the constraint regions by dynamic sparse training, which makes it possible to reduce the resource cost. The experimental results show that the proposed DSN model can achieve state-of-art performance on both univariate and multivariate TSC datasets with less than 50\% computational cost compared with recent baseline methods, opening the path towards more accurate resource-aware methods for time series analyses. Our code is publicly available at: https://github.com/QiaoXiao7282/DSN.
translated by 谷歌翻译
It is widely believed that given the same labeling budget, active learning algorithms like uncertainty sampling achieve better predictive performance than passive learning (i.e. uniform sampling), albeit at a higher computational cost. Recent empirical evidence suggests that this added cost might be in vain, as uncertainty sampling can sometimes perform even worse than passive learning. While existing works offer different explanations in the low-dimensional regime, this paper shows that the underlying mechanism is entirely different in high dimensions: we prove for logistic regression that passive learning outperforms uncertainty sampling even for noiseless data and when using the uncertainty of the Bayes optimal classifier. Insights from our proof indicate that this high-dimensional phenomenon is exacerbated when the separation between the classes is small. We corroborate this intuition with experiments on 20 high-dimensional datasets spanning a diverse range of applications, from finance and histology to chemistry and computer vision.
translated by 谷歌翻译
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems. In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users. DR has a widely recognized potential for improving power grid stability and reliability, while at the same time reducing end-users energy bills. However, the conventional DR techniques come with several shortcomings, such as the inability to handle operational uncertainties while incurring end-user disutility, which prevents widespread adoption in real-world applications. The proposed framework addresses these shortcomings by implementing DR and DEM based on real-time pricing strategy that is achieved using deep reinforcement learning. Furthermore, this framework enables the power grid service provider to leverage distributed energy resources (i.e., PV rooftop panels and battery storage) as dispatchable assets to support the smart grid during peak hours, thus achieving management of distributed energy resources. Simulation results based on the Deep Q-Network (DQN) demonstrate significant improvements of the 24-hour accumulative profit for both prosumers and the power grid service provider, as well as major reductions in the utilization of the power grid reserve generators.
translated by 谷歌翻译
Recent works have impressively demonstrated that there exists a subnetwork in randomly initialized convolutional neural networks (CNNs) that can match the performance of the fully trained dense networks at initialization, without any optimization of the weights of the network (i.e., untrained networks). However, the presence of such untrained subnetworks in graph neural networks (GNNs) still remains mysterious. In this paper we carry out the first-of-its-kind exploration of discovering matching untrained GNNs. With sparsity as the core tool, we can find \textit{untrained sparse subnetworks} at the initialization, that can match the performance of \textit{fully trained dense} GNNs. Besides this already encouraging finding of comparable performance, we show that the found untrained subnetworks can substantially mitigate the GNN over-smoothing problem, hence becoming a powerful tool to enable deeper GNNs without bells and whistles. We also observe that such sparse untrained subnetworks have appealing performance in out-of-distribution detection and robustness of input perturbations. We evaluate our method across widely-used GNN architectures on various popular datasets including the Open Graph Benchmark (OGB).
translated by 谷歌翻译
近年来,地理空间行业一直在稳定发展。这种增长意味着增加卫星星座,每天都会产生大量的卫星图像和其他遥感数据。有时,这些信息,即使在某些情况下我们指的是公开可用的数据,由于它的大小,它也无法占据。从时间和其他资源的角度来看,借助人工或使用传统的自动化方法来处理如此大量的数据并不总是可行的解决方案。在目前的工作中,我们提出了一种方法,用于创建一个由公开可用的遥感数据组成的多模式和时空数据集,并使用ART机器学习(ML)技术进行可行性进行测试。确切地说,卷积神经网络(CNN)模型的用法能够分离拟议数据集中存在的不同类别的植被。在地理信息系统(GIS)和计算机视觉(CV)的背景下,类似方法的受欢迎程度和成功更普遍地表明,应考虑并进一步分析和开发方法。
translated by 谷歌翻译
节点嵌入方法将网络节点映射到低维矢量的节点,随后可以在各种下游预测任务中使用。近年来,这些方法的普及大大增加了,但是它们对输入数据扰动的稳健性仍然很少了解。在本文中,我们评估了节点嵌入模型的经验鲁棒性,以对随机和对抗中毒攻击。我们的系统评估涵盖了基于跳过,矩阵分解和深神经网络的代表性嵌入方法。我们比较使用网络属性和节点标签计算的边缘添加,删除和重新布线策略。我们还研究了标签均质和异质性对鲁棒性的影响。我们通过在下游节点分类和网络重建性能方面嵌入可视化和定量结果来报告定性结果。我们发现,与网络重建相反,节点分类遭受更高的性能降解,基于程度和基于标签的攻击平均是最大的破坏性攻击。
translated by 谷歌翻译
我们提出了神经链,这是一个新颖的学习框架,用于对多视图图像输入进行准确的头发几何形状和外观进行建模。从任何观点都具有高保真视图依赖性效果,可以实时渲染学习的头发模型。我们的模型可实现直观的形状和风格控制,与体积同行不同。为了实现这些特性,我们提出了一种基于神经头皮纹理的新型头发表示,该神经头皮纹理编码每个Texel位置的单个链的几何形状和外观。此外,我们基于学习的头发链的栅格化引入了一个新型的神经渲染框架。我们的神经渲染是链的和抗氧化的,使渲染视图一致且逼真。将外观与多视图几何事先结合在一起,我们首次启用了外观的联合学习和从多视图设置的显式头发几何形状。我们证明了我们的方法在各种发型的忠诚度和效率方面的功效。
translated by 谷歌翻译
检测数据分布突然变化的变更点检测(CPD)被认为是时间序列分析中最重要的任务之一。尽管关于离线CPD的文献广泛,但无监督的在线CPD仍面临主要挑战,包括可扩展性,超参数调整和学习限制。为了减轻其中一些挑战,在本文中,我们提出了一种新颖的深度学习方法,用于从多维时间序列中无监督的在线CPD,名为Adaptive LSTM-AUTOENOCODER变更点检测(ALACPD)。 ALACPD利用了基于LSTM-AutoEncoder的神经网络来执行无监督的在线CPD。它连续地适应了传入的样本,而无需保留先前接收的输入,因此没有内存。我们对几个实际时间序列的CPD基准进行了广泛的评估。我们表明,在时间序列细分的质量方面,ALACPD平均在最先进的CPD算法中排名第一,并且就估计更改点的准确性而言,它与表现最好。 ALACPD的实现可在Github \ footNote {\ url {https://github.com/zahraatashgahi/alacpd}}上在线获得。
translated by 谷歌翻译
自视觉变压器(VIT)出现以来,变形金刚在计算机视觉世界中迅速发光。卷积神经网络(CNN)的主要作用似乎受到越来越有效的基于变压器的模型的挑战。最近,几个先进的卷积模型以当地但大量注意机制的驱动的大型内核进行反击,显示出吸引力的性能和效率。尽管其中一个(即Replknet)令人印象深刻地设法将内核大小扩展到31x31,而性能提高,但随着内核大小的持续增长,性能开始饱和,与Swin Transformer等高级VIT的缩放趋势相比。在本文中,我们探讨了训练大于31x31的极端卷积的可能性,并测试是否可以通过策略性地扩大卷积来消除性能差距。这项研究最终是从稀疏性的角度施加极大核的食谱,该核心可以将内核平滑地扩展到61x61,并且性能更好。我们提出了稀疏的大内核网络(SLAK),这是一种纯CNN架构,配备了51x51个核,可以与最先进的层次变压器和现代探测器架构(如Convnext和Repleknet and Replknet and Replknet and Replknet and Replinext and Replknet and Replinext and Convnext and Replentical conternels cor相同或更好在成像网分类以及典型的下游任务上。我们的代码可在此处提供https://github.com/vita-group/slak。
translated by 谷歌翻译