Sigmorphon 2022关于词素分割的共享任务挑战了将单词分解为一系列词素的系统,并涵盖了大多数类型的形态:化合物,衍生和弯曲。子任务1,单词级词素细分,涵盖了9种语言的500万个单词(捷克,英语,西班牙语,匈牙利语,法语,意大利语,俄语,拉丁语,蒙古语),并收到了7个团队的13个系统提交,最佳系统平均为97.29%F1在所有语言中得分,英语(93.84%)到拉丁语(99.38%)。子任务2,句子级的词素细分,涵盖了3种语言的18,735个句子(捷克,英语,蒙古人),从3个团队中收到10个系统提交,最好的系统优于所有三种最先进的子字体化方法(BPE(BPE),Ulm,Morfessor2)绝对30.71%。为了促进错误分析并支持任何类型的未来研究,我们发布了所有系统预测,评估脚本和所有黄金标准数据集。
translated by 谷歌翻译
通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译