最近,已经提出了基于力量的论证框架(Strafs)来模拟与参数相关的一些定量强度的情况。在这种情况下,应计的概念对应于集体攻击参数的一组参数。已经定义了一些语义,这些语义对集体击败目标的应计的存在敏感,而他们的个人要素不能。但是,到目前为止,仅研究了该框架和语义的表面。确实,现有文献集中于稳定语义对Strafs的适应。在本文中,我们推进研究并研究基于可接受性语义的适应。尤其是,我们表明,文献中定义的强大可接受性并不满足理想的财产,即粪便的基本引理。因此,我们提出了一个替代定义,该定义诱发了表现为预期的语义。然后,我们研究了这些新语义的计算问题,特别是我们表明推理的复杂性与几乎所有情况下标准论证框架相应决策问题的复杂性相似。然后,我们提出了用于计算(强和弱)扩展的伪树树限制的翻译。我们对我们的方法进行了实验评估的结论,该评估特别表明,它可以很好地扩展到解决一个扩展和枚举所有内容的问题。
translated by 谷歌翻译
背景:机器学习(ML)系统依靠数据来做出预测,与传统软件系统(例如数据处理管道,服务管道和模型培训)相比,该系统具有许多添加的组件。现有关于软件维护的研究研究了针对不同类型的问题(例如绩效和安全问题)的问题报告需求和解决过程。但是,ML系统具有特定的故障类别,报告ML问题需要特定于域的信息。由于ML和传统软件工程系统之间的特征不同,我们不知道报告需求在多大程度上不同,并且这些差异在多大程度上影响了问题解决过程。目的:我们的目标是调查ML和非ML问题之间分辨率时间的分布以及某些ML问题的分配时间是否存在差异。我们进一步研究了ML问题和非ML问题的修复大小。方法:我们在GitHub的最新活动应用ML项目中提取问题报告,提取请求和代码文件,并使用自动方法过滤ML和非ML问题。我们使用已知的深度学习错误分类法手动标记这些问题。我们测量了受控样本上ML和非ML问题的解决方案的分辨率时间和大小,并比较每个类别的分布。
translated by 谷歌翻译