访问大型和多样化的计算机辅助设计(CAD)图纸对于开发符号发现算法至关重要。在本文中,我们展示了地板平面图,这是一个大型现实世界CAD绘图数据集,包含超过10,000楼的计划,从住宅到商业建筑。 DataSet中的CAD图形都表示为矢量图形,这使我们能够提供30个对象类别的线粒化注释。通过这种注释配备,我们介绍了Panoptic符号发现的任务,这需要点发现可数件事的实例,也需要发现不可数的东西的语义。旨在解决这项任务,我们通过将图形卷积网络(GCNS)与卷积神经网络(CNNS)组合来提出一种新颖的方法,其捕获非欧几里德和欧几里德特征,并且可以训练结束到底。所提出的CNN-GCN方法在语义符号发现的任务上实现了最先进的(SOTA)性能,并帮助我们为Panoptic符号发现任务构建基线网络。我们的贡献是三倍:1)据我们所知,所呈现的CAD图形数据集是其第一个; 2)Panoptic Symbol Spotting Task考虑了事物实例的发现和语义作为一个识别问题; 3)我们基于新型CNN-GCN方法向Panoptic Symbol Spotting Task提供了基线解决方案,该方法在语义符号斑点上实现了SOTA性能。我们认为,这些贡献将促进相关领域的研究。
translated by 谷歌翻译
Fine-grained classification and counting of bone marrow erythroid cells are vital for evaluating the health status and formulating therapeutic schedules for leukemia or hematopathy. Due to the subtle visual differences between different types of erythroid cells, it is challenging to apply existing image-based deep learning models for fine-grained erythroid cell classification. Moreover, there is no large open-source datasets on erythroid cells to support the model training. In this paper, we introduce BMEC (Bone Morrow Erythroid Cells), the first large fine-grained image dataset of erythroid cells, to facilitate more deep learning research on erythroid cells. BMEC contains 5,666 images of individual erythroid cells, each of which is extracted from the bone marrow erythroid cell smears and professionally annotated to one of the four types of erythroid cells. To distinguish the erythroid cells, one key indicator is the cell shape which is closely related to the cell growth and maturation. Therefore, we design a novel shape-aware image classification network for fine-grained erythroid cell classification. The shape feature is extracted from the shape mask image and aggregated to the raw image feature with a shape attention module. With the shape-attended image feature, our network achieved superior classification performance (81.12\% top-1 accuracy) on the BMEC dataset comparing to the baseline methods. Ablation studies also demonstrate the effectiveness of incorporating the shape information for the fine-grained cell classification. To further verify the generalizability of our method, we tested our network on two additional public white blood cells (WBC) datasets and the results show our shape-aware method can generally outperform recent state-of-the-art works on classifying the WBC. The code and BMEC dataset can be found on https://github.com/wangye8899/BMEC.
translated by 谷歌翻译
您将如何修复大量错过的物理物体?您可能首先恢复其全球且粗糙的形状,并逐步增加其本地细节。我们有动力模仿上述物理维修程序,以解决点云完成任务。我们为各种3D模型提出了一个新颖的逐步点云完成网络(SPCNET)。 SPCNET具有层次的底部网络体系结构。它以迭代方式实现形状完成,1)首先扩展了粗糙结果的全局特征; 2)然后在全球功能的帮助下注入本地功能; 3)最终借助局部特征和粗糙的结果来渗透详细的结果。除了模拟物理修复的智慧之外,我们还新设计了基于周期损失%的训练策略,以增强SPCNET的概括和鲁棒性。广泛的实验清楚地表明了我们的SPCNET优于3D点云上最先进的方法,但错过了很大。
translated by 谷歌翻译
网状denoising是数字几何处理中的基本问题。它试图消除表面噪声,同时尽可能准确地保留表面固有信号。尽管传统的智慧是基于专门的先验来平稳表面的,但基于学习的方法在概括和自动化方面取得了巨大的成功。在这项工作中,我们对网格denoising的进步进行了全面的综述,其中包含传统的几何方法和最近的基于学习的方法。首先,要熟悉读者的denoising任务,我们总结了网格denoising中的四个常见问题。然后,我们提供了两种现有的脱氧方法的分类。此外,分别详细介绍和分析了三个重要类别,包括优化,过滤器和基于数据驱动的技术。说明了定性和定量比较,以证明最先进的去核方法的有效性。最后,指出未来工作的潜在方向来解决这些方法的共同问题。这项工作还建立了网格denoising基准测试,未来的研究人员将通过最先进的方法轻松方便地评估其方法。
translated by 谷歌翻译
高信心重叠的预测和准确的对应关系对于以部分到派对方式对齐成对点云至关重要。但是,重叠区域和非重叠区域之间存在固有的不确定性,这些区域一直被忽略并显着影响注册绩效。除了当前的智慧之外,我们提出了一种新颖的不确定性意识到的重叠预测网络,称为Utopic,以解决模棱两可的重叠预测问题。据我们所知,这是第一个明确引入重叠不确定性以指向云注册的人。此外,我们诱导特征提取器通过完成解码器隐式感知形状知识,并为变压器提供几何关系嵌入,以获得转换 - 不变性的几何形状感知特征表示。凭借更可靠的重叠得分和更精确的密度对应关系的优点,即使对于有限的重叠区域的输入,乌托邦也可以实现稳定而准确的注册结果。关于合成和实际基准的广泛定量和定性实验证明了我们的方法优于最先进的方法。代码可从https://github.com/zhileichen99/utopic获得。
translated by 谷歌翻译
您将如何通过一些错过来修复物理物体?您可能会想象它的原始形状从先前捕获的图像中,首先恢复其整体(全局)但粗大的形状,然后完善其本地细节。我们有动力模仿物理维修程序以解决点云完成。为此,我们提出了一个跨模式的形状转移双转化网络(称为CSDN),这是一种带有全循环参与图像的粗到精细范式,以完成优质的点云完成。 CSDN主要由“ Shape Fusion”和“ Dual-Refinect”模块组成,以应对跨模式挑战。第一个模块将固有的形状特性从单个图像传输,以指导点云缺失区域的几何形状生成,在其中,我们建议iPadain嵌入图像的全局特征和部分点云的完成。第二个模块通过调整生成点的位置来完善粗糙输出,其中本地改进单元通过图卷积利用了小说和输入点之间的几何关系,而全局约束单元则利用输入图像来微调生成的偏移。与大多数现有方法不同,CSDN不仅探讨了图像中的互补信息,而且还可以在整个粗到精细的完成过程中有效利用跨模式数据。实验结果表明,CSDN对十个跨模式基准的竞争对手表现出色。
translated by 谷歌翻译
点云的语义分割,旨在为每个点分配语义类别,对3D场景的理解至关重要。尽管近年来取得了重大进展,但大多数现有方法仍然遭受对象级别的错误分类或边界级别的歧义。在本文中,我们通过深入探索被称为Geosegnet的点云的几何形状来提出一个强大的语义分割网络。我们的Geosegnet由一个基于多几何的编码器和边界引导的解码器组成。在编码器中,我们从多几何的角度开发了一个新的残差几何模块,以提取对象级特征。在解码器中,我们引入了一个对比边界学习模块,以增强边界点的几何表示。从几何编码器模型中受益,我们的GEOSEGNET可以在使两个或多个对象的相交(边界)清晰地确定对象的分割。从总体分割精度和对象边界清除方面,实验显示了我们方法对竞争对手的明显改善。代码可在https://github.com/chen-yuiyui/geosegnet上找到。
translated by 谷歌翻译
配对点云之间的低空区域使被捕获的特征非常自信,导致尖端模型以质量较差的云登记。除了传统的智慧之外,我们还提出了一个有趣的问题:是否有可能在两个低重叠点云之间利用中间却又错位的图像来增强尖端注册模型的性能?为了回答它,我们提出了一个被称为Imlovenet的低重叠点云对的未对准图像支持的注册网络。 Imlovenet首先学习跨不同模态的三重深特征,然后将这些特征导出到两个阶段分类器中,以逐步获得两个点云之间的高信心重叠区域。因此,软对应关系在预测的重叠区域中得到了很好的确定,从而导致了准确的刚性转换。 Imlovenet易于实现,但有效,因为1)未对准的图像为两个低重叠点云提供了更清晰的重叠信息,以更好地定位重叠零件; 2)它包含某些几何知识,以提取更好的深度特征; 3)它不需要成像设备的外部参数,相对于3D点云的参考框架。对各种基准的广泛定性和定量评估证明了我们的iMlovenet比最新方法的有效性和优越性。
translated by 谷歌翻译
雨是最常见的天气之一,可以完全降低图像质量并干扰许多计算机视觉任务的执行,尤其是在大雨条件下。我们观察到:(i)雨是雨水和雨淋的混合物; (ii)场景的深度决定了雨条的强度以及变成多雨的阴霾的强度; (iii)大多数现有的DERANE方法仅在合成雨图像上进行训练,因此对现实世界的场景概括不佳。在这些观察结果的激励下,我们提出了一种新的半监督,清除降雨生成的对抗网络(半密集),该混合物由四个关键模块组成:(i)新的注意力深度预测网络以提供精确的深度估计; (ii)上下文特征预测网络由几个精心设计的详细残留块组成,以产生详细的图像上下文特征; (iii)金字塔深度引导的非本地网络,以有效地将图像上下文与深度信息整合在一起,并产生最终的无雨图像; (iv)全面的半监督损失函数,使该模型不限于合成数据集,而是平稳地将其概括为现实世界中的大雨场景。广泛的实验表明,在合成和现实世界中,我们的二十多种代表性的最先进的方法对我们的方法进行了明显的改进。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译