先进的面部交换方法取得了吸引力的结果。但是,这些方法中的大多数具有许多参数和计算,这使得在实时应用程序中应用它们或在移动电话等边缘设备上部署它们的挑战。在这项工作中,通过根据身份信息动态调整模型参数,提出了一种用于主目不可知的人的动态网络(IDN),用于通过动态调整模型参数。特别地,我们通过引入两个动态神经网络技术来设计高效的标识注入模块(IIM),包括权重预测和权重调制。更新IDN后,可以应用于给定任何目标图像或视频的交换面。所呈现的IDN仅包含0.50米的参数,每个框架需要0.33g拖鞋,使其能够在移动电话上运行实时视频面。此外,我们介绍了一种基于知识的蒸馏的方法,用于稳定训练,并且使用损耗重量模块来获得更好的合成结果。最后,我们的方法通过教师模型和其他最先进的方法实现了可比的结果。
translated by 谷歌翻译
低成本单眼的3D对象检测在自主驾驶中起着基本作用,而其精度仍然远非令人满意。在本文中,我们挖掘了3D对象检测任务,并将其重构为对象本地化和外观感知的子任务,这有​​利于整个任务的互惠信息的深度挖掘。我们介绍了一个名为DFR-Net的动态特征反射网络,其中包含两种新的独立模块:(i)首先将任务特征分开的外观定位特征反射模块(ALFR),然后自相互反映互核特征; (ii)通过自学习方式自适应地重建各个子任务的培训过程的动态内部交易模块(DIT)。关于挑战基蒂数据集的广泛实验证明了DFR网的有效性和泛化。我们在基蒂测试集中的所有单眼3D对象探测器中排名第一(直到2021年3月16日)。所提出的方法在许多尖端的3D检测框架中也容易在较忽略的成本下以忽略的成本来播放。该代码将公开可用。
translated by 谷歌翻译
由于LIDAR传感器捕获的精确深度信息缺乏准确的深度信息,单眼3D对象检测是一个关键而挑战的自主驾驶任务。在本文中,我们提出了一种立体引导的单目3D对象检测网络,称为SGM3D,其利用立体图像提取的鲁棒3D特征来增强从单眼图像中学到的特征。我们创新地研究了多粒度域适配模块(MG-DA)以利用网络的能力,以便仅基于单手套提示产生立体模拟功能。利用粗均衡特征级以及精细锚级域适配,以引导单眼分支。我们介绍了一个基于IOO匹配的对齐模块(iou-ma),用于立体声和单眼域之间的对象级域适应,以减轻先前阶段中的不匹配。我们对最具挑战性的基蒂和Lyft数据集进行了广泛的实验,并实现了新的最先进的性能。此外,我们的方法可以集成到许多其他单眼的方法中以提高性能而不引入任何额外的计算成本。
translated by 谷歌翻译
为了实现解除不诚格的图像操纵,以前的作品依赖于手动注释。同时,可用的操作仅限于预定义的集合培训的模型。在本文中,我们提出了一种新颖的框架,即预测,预防和评估(PPE),用于解散的文本驱动的图像操纵,其不需要手动注释,因此不限于固定操作。我们的方法通过深入利用大规模预先训练的视觉语言模型剪辑的力量来接近目标。具体地,我们首先预测给定文本命令可能纠缠的属性。然后,基于预测的属性,我们引入了纠缠损失以防止培训期间的缠结。最后,我们提出了一个新的评估度量来评估解除戒开的图像操纵。我们验证了我们对挑战面部编辑任务的方法的有效性。广泛的实验表明,所提出的PPE框架比最新的特写率基线实现了更好的定量和定性结果。
translated by 谷歌翻译
尽管在许多计算机视觉任务上具有卓越的性能,但深度卷积神经网络众所周知,在具有资源限制的设备上被压缩。大多数现有的网络修剪方法需要艰苦的人类努力和禁止的计算资源,特别是当约束改变时。当需要部署在各种设备上时,这实际上限制了模型压缩的应用。此外,现有的方法仍然受到缺失的理论指导挑战。在本文中,我们提出了一种信息理论启发的自动模型压缩策略。我们的方法背后的原理是信息瓶颈理论,即隐藏的表示应该彼此压缩信息。因此,我们在网络激活中介绍了标准化的Hilbert-Schmidt独立性标准(NHSIC),作为层重要性的稳定和广义指标。当给出某个资源约束时,我们将HSIC指示器与约束将架构搜索问题转换为具有二次约束的线性编程问题。这种问题很容易通过几秒钟的凸优化方法解决。我们还提供严格的证据,揭示优化归一化的HSIC同时最小化不同层之间的相互信息。没有任何搜索过程,我们的方法实现了与最先进的压缩算法相比的更好的压缩权衡。例如,通过Reset-50,我们达到了45.3%的杂志,在想象中有75.75前1个精度。代码是在https://github.com/mac-automl/itpruner/tree/master上的途径。
translated by 谷歌翻译
在视觉上丰富的文件(VRD)上的结构化文本理解是文档智能的重要组成部分。由于VRD中的内容和布局的复杂性,结构化文本理解是一项有挑战性的任务。大多数现有的研究将此问题与两个子任务结尾:实体标记和实体链接,这需要整体地了解令牌和段级别的文档的上下文。但是,很少的工作已经关注有效地从不同层次提取结构化数据的解决方案。本文提出了一个名为structext的统一框架,它对于处理两个子任务是灵活的,有效的。具体地,基于变压器,我们引入了一个段令牌对齐的编码器,以处理不同粒度水平的实体标记和实体链接任务。此外,我们设计了一种具有三个自我监督任务的新型预训练策略,以学习更丰富的代表性。 Structext使用现有屏蔽的视觉语言建模任务和新句子长度预测和配对框方向任务,以跨文本,图像和布局结合多模态信息。我们评估我们在分段级别和令牌级别的结构化文本理解的方法,并表明它优于最先进的同行,在Funsd,Srie和Ephoie数据集中具有显着优越的性能。
translated by 谷歌翻译
基于宽高的情绪分析(ABSA)是一种细粒度的情绪分析任务。为了更好地理解长期复杂的句子,并获得准确的方面的信息,这项任务通常需要语言和致辞知识。然而,大多数方法采用复杂和低效的方法来结合外部知识,例如,直接搜索图形节点。此外,尚未彻底研究外部知识和语言信息之间的互补性。为此,我们提出了一个知识图形增强网络(kgan),该网络(kgan)旨在有效地将外部知识与明确的句法和上下文信息纳入。特别是,kgan从多个不同的角度来看,即基于上下文,语法和知识的情绪表示。首先,kgan通过并行地了解上下文和句法表示,以完全提取语义功能。然后,KGAN将知识图形集成到嵌入空间中,基于该嵌入空间,基于该嵌入空间,通过注意机制进一步获得了方面特异性知识表示。最后,我们提出了一个分层融合模块,以便以本地到全局方式补充这些多视图表示。关于三个流行的ABSA基准测试的广泛实验证明了我们康复的效果和坚固性。值得注意的是,在罗伯塔的预用模型的帮助下,Kggan实现了最先进的性能的新记录。
translated by 谷歌翻译
基于深度学习的计算机辅助诊断在乳腺癌检测中取得了前所未有的性能。然而,大多数方法都是计算密集型的,这阻碍了他们在现实世界应用中的更广泛传播。在这项工作中,我们提出了一种高效和轻量加权的多任务学习架构,同时分类和分段乳腺肿瘤。我们将分段任务纳入肿瘤分类网络,使骨干网络学习侧重于肿瘤区域的陈述。此外,我们提出了一种新的数值稳定的损失功能,可容易地控制癌症检测的敏感性和特异性之间的平衡。使用具有1,511个图像的乳房超声数据集来评估所提出的方法。肿瘤分类的准确性,敏感性和特异性分别为88.6%,94.1%和85.3%。我们使用虚拟移动设备验证模型,每个图像的平均推断时间为0.35秒。
translated by 谷歌翻译
放射学报告生成旨在产生计算机辅助诊断,以缓解放射科医生的工作量,并最近引起了越来越长的关注。然而,之前的深度学习方法倾向于忽视医学发现之间的相互影响,这可以是限制所生成的报告质量的瓶颈。在这项工作中,我们建议在信息知识图表中提出和代表医学发现的协会,并将此事先知识纳入放射学报告,以帮助提高所生成的报告质量。实验结果证明了我们在IU X射线数据集上的提出方法的优越性,Rouge-L为0.384 $ \ PM $ 0.007和0.340 $ \ PM $ 0.011。与以前的作品相比,我们的模型平均实现了1.6%(苹果酒和Rouge-L的增加2.0%和1.5%)。实验表明,先验知识可以为准确的放射学报告生成表现收益。我们将在https://github.com/bionlplab/report_generation_amia2022中公开公开可用的代码。
translated by 谷歌翻译
端到端(E2E)自动语音识别模型如经常性神经网络传感器(RNN-T)正成为流媒体级语音助手的流行选择。虽然E2E模型在学习培训数据的学习代表时非常有效,但他们对看不见的域的准确性仍然是一个具有挑战性的问题。此外,这些模型需要配对的音频和文本培训数据,计算得昂贵,并且难以适应对话语音的快速不断发展的性质。在这项工作中,我们探讨了使用利用文本数据源的似然比来调整RNN-T模型的上下文偏置方法。我们表明这种方法在提高稀有单词识别方面是有效的,并导致在多个OUT的N-BEST ORACLE WER(n = 8)中为10%的相对提高10%,在多个外部域数据集没有常规数据集没有任何劣化。我们还表明,通过适应第二遍辅助模型的互补偏置适应性提供了加性WER改进。
translated by 谷歌翻译