建筑物中的供暖和冷却系统占全球能源使用的31%,其中大部分受基于规则的控制器(RBC)调节,这些控制器(RBC)既不通过与网格最佳交互来最大程度地提高能源效率或最小化排放。通过增强学习(RL)的控制已显示可显着提高建筑能源效率,但是现有的解决方案需要在模拟器中进行预训练,这些模拟器对世界上每栋建筑物的获得非常昂贵。作为回应,我们表明可以通过结合系统识别和基于模型的RL的想法来对建筑物进行安全,零射击的控制。我们称这种组合珍珠(概率避免施加加固的增强学习),并表明它可以减少排放而无需预先培训,只需要三个小时的调试期。在三个不同的建筑能源模拟的实验中,我们显示珍珠在所有情况下都胜过现有的RBC,并且在所有情况下,流行的RL基线,在维持热舒适度的同时,将建筑物排放量降低了31%。
translated by 谷歌翻译
建筑物中的加热和冷却系统占全球能源使用的31 \%,其中大部分受基于规则的控制器(RBC)调节,这些控制器(RBC)既不通过与电网进行最佳交互来最大化能源效率或最小化排放。通过强化学习(RL)的控制已显示可显着提高建筑能源效率,但是现有的解决方案需要访问世界上每栋建筑物都无法期望的特定建筑模拟器或数据。作为回应,我们表明可以在没有这样的知识的情况下获得减少排放的政策,这是我们称为零射击建筑物控制的范式。我们结合了系统识别和基于模型的RL的想法,以创建PEARL(概率避免发射的增强学习),并表明建立表现模型所需的短期积极探索是所需的。在三个不同的建筑能源模拟的实验中,我们显示珍珠在所有情况下都优于现有的RBC,并且在所有情况下,流行的RL基线,在维持热舒适度的同时,将建筑物排放量减少了31 \%。我们的源代码可通过https://enjeener.io/projects/pearl在线获得。
translated by 谷歌翻译
This paper is a technical overview of DeepMind and Google's recent work on reinforcement learning for controlling commercial cooling systems. Building on expertise that began with cooling Google's data centers more efficiently, we recently conducted live experiments on two real-world facilities in partnership with Trane Technologies, a building management system provider. These live experiments had a variety of challenges in areas such as evaluation, learning from offline data, and constraint satisfaction. Our paper describes these challenges in the hope that awareness of them will benefit future applied RL work. We also describe the way we adapted our RL system to deal with these challenges, resulting in energy savings of approximately 9% and 13% respectively at the two live experiment sites.
translated by 谷歌翻译
在RL的许多实际应用中,观察来自环境的状态过渡是昂贵的。例如,在核聚变的等离子体控制问题中,计算给定的状态对对的下一个状态需要查询昂贵的过渡功能,这可以导致许多小时的计算机模拟或美元科学研究。这种昂贵的数据收集禁止应用标准RL算法,该算法通常需要大量观察来学习。在这项工作中,我们解决了有效地学习策略的问题,同时为转换函数进行最小数量的状态动作查询。特别是,我们利用贝叶斯最优实验设计的想法,以指导选择国家行动查询以获得高效学习。我们提出了一种采集功能,该函数量化了状态动作对将提供多少信息对Markov决策过程提供的最佳解决方案。在每次迭代时,我们的算法最大限度地提高了该采集功能,选择要查询的最具信息性的状态动作对,从而产生数据有效的RL方法。我们试验各种模拟的连续控制问题,并显示我们的方法学习最佳政策,最高$ 5 $ - $ 1,000 \倍的数据,而不是基于模型的RL基线,10 ^ 3美元 - $ 10 ^ 5 \ times比无模型RL基线更少的数据。我们还提供了几种消融比较,这指出了从获得数据的原理方法产生的大量改进。
translated by 谷歌翻译
Model-based reinforcement learning (RL) algorithms can attain excellent sample efficiency, but often lag behind the best model-free algorithms in terms of asymptotic performance. This is especially true with high-capacity parametric function approximators, such as deep networks. In this paper, we study how to bridge this gap, by employing uncertainty-aware dynamics models. We propose a new algorithm called probabilistic ensembles with trajectory sampling (PETS) that combines uncertainty-aware deep network dynamics models with sampling-based uncertainty propagation. Our comparison to state-of-the-art model-based and model-free deep RL algorithms shows that our approach matches the asymptotic performance of model-free algorithms on several challenging benchmark tasks, while requiring significantly fewer samples (e.g., 8 and 125 times fewer samples than Soft Actor Critic and Proximal Policy Optimization respectively on the half-cheetah task).
translated by 谷歌翻译
Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy usage in the U.S., and similar numbers are being reported from countries around the world. This significant amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is crucial that the energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of occupant comfort, health, and safety. Recently, Machine Learning has been proven to be an invaluable tool in deriving important insights from data and optimizing various systems. In this work, we review the ways in which machine learning has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we provide a brief introduction of several machine learning paradigms and the components and functioning of each smart building system we cover. Finally, we discuss challenges faced while implementing machine learning algorithms in smart buildings and provide future avenues for research at the intersection of smart buildings and machine learning.
translated by 谷歌翻译
The decarbonization of buildings presents new challenges for the reliability of the electrical grid as a result of the intermittency of renewable energy sources and increase in grid load brought about by end-use electrification. To restore reliability, grid-interactive efficient buildings can provide flexibility services to the grid through demand response. Residential demand response programs are hindered by the need for manual intervention by customers. To maximize the energy flexibility potential of residential buildings, an advanced control architecture is needed. Reinforcement learning is well-suited for the control of flexible resources as it is able to adapt to unique building characteristics compared to expert systems. Yet, factors hindering the adoption of RL in real-world applications include its large data requirements for training, control security and generalizability. Here we address these challenges by proposing the MERLIN framework and using a digital twin of a real-world 17-building grid-interactive residential community in CityLearn. We show that 1) independent RL-controllers for batteries improve building and district level KPIs compared to a reference RBC by tailoring their policies to individual buildings, 2) despite unique occupant behaviours, transferring the RL policy of any one of the buildings to other buildings provides comparable performance while reducing the cost of training, 3) training RL-controllers on limited temporal data that does not capture full seasonality in occupant behaviour has little effect on performance. Although, the zero-net-energy (ZNE) condition of the buildings could be maintained or worsened as a result of controlled batteries, KPIs that are typically improved by ZNE condition (electricity price and carbon emissions) are further improved when the batteries are managed by an advanced controller.
translated by 谷歌翻译
我们提出了一个混合工业冷却系统模型,该模型将分析解决方案嵌入多物理模拟中。该模型设计用于增强学习(RL)应用程序,并平衡简单性与模拟保真度和解释性。该模型的忠诚度根据大规模冷却系统的现实世界数据进行了评估。接下来是一个案例研究,说明如何将模型用于RL研究。为此,我们开发了一个工业任务套件,该套件允许指定不同的问题设置和复杂性水平,并使用它来评估不同RL算法的性能。
translated by 谷歌翻译
增强学习(RL)是多能管理系统的有前途的最佳控制技术。它不需要先验模型 - 降低了前期和正在进行的项目特定工程工作,并且能够学习基础系统动力学的更好表示。但是,香草RL不能提供约束满意度的保证 - 导致其在安全至关重要的环境中产生各种不安全的互动。在本文中,我们介绍了两种新颖的安全RL方法,即SafeFallback和Afvafe,其中安全约束配方与RL配方脱钩,并且提供了硬构成满意度,可以保证在培训(探索)和开发过程中(近距离) )最佳政策。在模拟的多能系统案例研究中,我们已经表明,这两种方法均与香草RL基准相比(94,6%和82,8%,而35.5%)和香草RL基准相比明显更高的效用(即有用的政策)开始。提出的SafeFallback方法甚至可以胜过香草RL基准(102,9%至100%)。我们得出的结论是,这两种方法都是超越RL的安全限制处理技术,正如随机代理所证明的,同时仍提供坚硬的保证。最后,我们向I.A.提出了基本的未来工作。随着更多数据可用,改善约束功能本身。
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
从视觉感觉数据中控制人造代理是一项艰巨的任务。强化学习(RL)算法可以在这方面取得成功,但需要代理与环境之间进行大量相互作用。为了减轻该问题,无监督的RL建议采用自我监督的互动和学习,以更快地适应未来的任务。但是,目前的无监督策略是否可以改善概括能力,尤其是在视觉控制设置中。在这项工作中,我们为数据有效的视觉控制设计了有效的无监督RL策略。首先,我们表明,使用无监督的RL收集的数据预先训练的世界模型可以促进适应未来的任务。然后,我们与我们的混合计划者分析了一些设计选择,以有效地适应了代理的预训练组件,并在想象中学习和计划,并与我们的混合计划者一起使用,我们将其dub dyna-mpc进行了。通过结合一项大规模实证研究的发现,我们建立了一种方法,该方法强烈改善了无监督的RL基准测试的性能,需要20美元$ \ times $ $ $ $ $ \少于数据以符合监督方法的性能。该方法还表明了在现实词的RL基准测试上的稳健性能,暗示该方法概括为嘈杂的环境。
translated by 谷歌翻译
安全已成为对现实世界系统应用深度加固学习的主要挑战之一。目前,诸如人类监督等外部知识的纳入唯一可以防止代理人访问灾难性状态的手段。在本文中,我们提出了一种基于安全模型的强化学习的新框架MBHI,可确保状态级安全,可以有效地避免“本地”和“非本地”灾难。监督学习者的合并在MBHI培训,以模仿人类阻止决策。类似于人类决策过程,MBHI将在执行对环境的动作之前在动态模型中推出一个想象的轨迹,并估算其安全性。当想象力遇到灾难时,MBHI将阻止当前的动作并使用高效的MPC方法来输出安全策略。我们在几个安全任务中评估了我们的方法,结果表明,与基线相比,MBHI在样品效率和灾难数方面取得了更好的性能。
translated by 谷歌翻译
本文介绍了一种用于开发面向控制的建筑物的散热模型的数据驱动建模方法。这些型号是通过降低能耗成本的目标而开发的,同时控制建筑物的室内温度,在所需的舒适度限制内。结合白/灰盒物理模型的可解释性和神经网络的表现力,我们提出了一种物理知识的神经网络方法,用于这种建模任务。除了测量的数据和构建参数之外,我们将通过管理这些建筑物的热行为的底层物理编码神经网络。因此,实现了由物理学引导的模型,有助于建模室温和功耗的时间演化以及隐藏状态,即建筑物热质量的温度。这项工作的主要研究贡献是:(1)我们提出了两种物理学的变种信息,为机构的控制定向热建模任务提供了通知的神经网络架构,(2)我们展示这些架构是数据效率的,需要更少培训数据与传统的非物理知识的神经网络相比,(3)我们表明这些架构比传统的神经网络实现更准确的预测,用于更长的预测视野。我们使用模拟和实际字数据测试所提出的架构的预测性能,以演示(2)和(3),并显示所提出的物理知识的神经网络架构可以用于该控制导向的建模问题。
translated by 谷歌翻译
在过去的十年中,强化学习成功地解决了复杂的控制任务和决策问题,例如Go棋盘游戏。然而,在将这些算法部署到现实世界情景方面的成功案例很少。原因之一是在处理和避免不安全状态时缺乏保证,这是关键控制工程系统的基本要求。在本文中,我们介绍了指导性的安全射击(GUS),这是一种基于模型的RL方法,可以学会以最小的侵犯安全限制来控制系统。该模型以迭代批次方式在系统操作过程中收集的数据中学习,然后用于计划在每个时间步骤执行的最佳动作。我们提出了三个不同的安全计划者,一个基于简单的随机拍摄策略,两个基于MAP-ELITE,一种更高级的发散搜索算法。实验表明,这些计划者可以帮助学习代理避免在最大程度地探索状态空间的同时避免不安全的情况,这是学习系统准确模型的必要方面。此外,与无模型方法相比,学习模型可以减少与现实系统的交互作用的数量,同时仍达到高奖励,这是处理工程系统时的基本要求。
translated by 谷歌翻译
数据驱动的模型预测控制比无模型方法具有两个关键优势:通过模型学习提高样本效率的潜力,并且作为计划增加的计算预算的更好性能。但是,在漫长的视野上进行计划既昂贵又挑战,以获得准确的环境模型。在这项工作中,我们结合了无模型和基于模型的方法的优势。我们在短范围内使用学习的面向任务的潜在动力学模型进行局部轨迹优化,并使用学习的终端值函数来估计长期回报,这两者都是通过时间差异学习共同学习的。我们的TD-MPC方法比在DMCONTROL和META-WORLD的状态和基于图像的连续控制任务上实现了卓越的样本效率和渐近性能。代码和视频结果可在https://nicklashansen.github.io/td-mpc上获得。
translated by 谷歌翻译
We present temporally layered architecture (TLA), a biologically inspired system for temporally adaptive distributed control. TLA layers a fast and a slow controller together to achieve temporal abstraction that allows each layer to focus on a different time-scale. Our design is biologically inspired and draws on the architecture of the human brain which executes actions at different timescales depending on the environment's demands. Such distributed control design is widespread across biological systems because it increases survivability and accuracy in certain and uncertain environments. We demonstrate that TLA can provide many advantages over existing approaches, including persistent exploration, adaptive control, explainable temporal behavior, compute efficiency and distributed control. We present two different algorithms for training TLA: (a) Closed-loop control, where the fast controller is trained over a pre-trained slow controller, allowing better exploration for the fast controller and closed-loop control where the fast controller decides whether to "act-or-not" at each timestep; and (b) Partially open loop control, where the slow controller is trained over a pre-trained fast controller, allowing for open loop-control where the slow controller picks a temporally extended action or defers the next n-actions to the fast controller. We evaluated our method on a suite of continuous control tasks and demonstrate the advantages of TLA over several strong baselines.
translated by 谷歌翻译
The high emission and low energy efficiency caused by internal combustion engines (ICE) have become unacceptable under environmental regulations and the energy crisis. As a promising alternative solution, multi-power source electric vehicles (MPS-EVs) introduce different clean energy systems to improve powertrain efficiency. The energy management strategy (EMS) is a critical technology for MPS-EVs to maximize efficiency, fuel economy, and range. Reinforcement learning (RL) has become an effective methodology for the development of EMS. RL has received continuous attention and research, but there is still a lack of systematic analysis of the design elements of RL-based EMS. To this end, this paper presents an in-depth analysis of the current research on RL-based EMS (RL-EMS) and summarizes the design elements of RL-based EMS. This paper first summarizes the previous applications of RL in EMS from five aspects: algorithm, perception scheme, decision scheme, reward function, and innovative training method. The contribution of advanced algorithms to the training effect is shown, the perception and control schemes in the literature are analyzed in detail, different reward function settings are classified, and innovative training methods with their roles are elaborated. Finally, by comparing the development routes of RL and RL-EMS, this paper identifies the gap between advanced RL solutions and existing RL-EMS. Finally, this paper suggests potential development directions for implementing advanced artificial intelligence (AI) solutions in EMS.
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
Compared with model-based control and optimization methods, reinforcement learning (RL) provides a data-driven, learning-based framework to formulate and solve sequential decision-making problems. The RL framework has become promising due to largely improved data availability and computing power in the aviation industry. Many aviation-based applications can be formulated or treated as sequential decision-making problems. Some of them are offline planning problems, while others need to be solved online and are safety-critical. In this survey paper, we first describe standard RL formulations and solutions. Then we survey the landscape of existing RL-based applications in aviation. Finally, we summarize the paper, identify the technical gaps, and suggest future directions of RL research in aviation.
translated by 谷歌翻译