In this paper, we investigate the possibility of the backward-differential-flow-like algorithm which starts from the minimum of convexification version of the polynomial. We apply the heat evolution convexification approach through Gaussian filtering, which is actually an accumulation version of Steklov's regularization. We generalize the fingerprint theory which was proposed in the theory of computer vision by A.L. Yuille and T. Poggio in 1980s, in particular their fingerprint trajectory equation, to characterize the evolution of minimizers across the scale. On the other hand, we propose the "seesaw" polynomials $p(x|s)$ and we find a seesaw differential equation $\frac{\partial p(x|s)}{\,ds}=-\frac{1}{p''(x)}$ to characterize the evolution of global minimizer $x^*(s)$ of $p(x|s)$ while varying $s$. Essentially, both the fingerprints $\mathcal{FP}_2$ and $\mathcal{FP}_3$ of $p(x)$, consisting of the zeros of $\frac{\partial^2 p(x,t)}{\partial x^2}$ and $\frac{\partial^3 p(x,t)}{\partial x^3}$, respectively, are independent of seesaw coefficient $s$, upon which we define the Confinement Zone and Escape Zone. Meanwhile, varying $s$ will monotonically condition the location of global minimizer of $p(x|s)$, and all these location form the Attainable Zone. Based on these concepts, we prove that the global minimizer $x^*$ of $p(x)$ can be inversely evolved from the global minimizer of its convexification polynomial $p(x,t_0)$ if and only if $x^*$ is included in the Escape Zone. In particular, we give detailed analysis for quartic and six degree polynomials.
translated by 谷歌翻译
我们研究由线性卷积神经网络(LCN)代表的功能家族。这些函数形成了从输入空间到输出空间的线性地图集的半代数子集。相比之下,由完全连接的线性网络表示的函数家族形成代数集。我们观察到,LCN代表的功能可以通过接受某些因素化的多项式来识别,我们使用此视角来描述网络体系结构对所得功能空间几何形状的影响。我们进一步研究了在LCN上的目标函数的优化,分析了功能空间和参数空间中的临界点,并描述了梯度下降的动态不变性。总体而言,我们的理论预测,LCN的优化参数通常对应于跨层的重复过滤器,或可以分解为重复过滤器的过滤器。我们还进行了数值和符号实验,以说明我们的结果,并对小体系结构的景​​观进行深入分析。
translated by 谷歌翻译
作为理解过度参数模型中梯度下降的隐式偏差的努力的一部分,有几个结果表明,如何将过份术模型上的训练轨迹理解为不同目标上的镜像。这里的主要结果是在称为通勤参数化的概念下对这种现象的表征,该概念涵盖了此设置中的所有先前结果。结果表明,具有任何通勤参数化的梯度流相当于具有相关Legendre函数的连续镜下降。相反,具有任何legendre函数的连续镜下降可以被视为具有相关通勤参数化的梯度流。后一个结果依赖于纳什的嵌入定理。
translated by 谷歌翻译
Cohen等人的深度学习实验。 [2021]使用确定性梯度下降(GD)显示学习率(LR)和清晰度(即Hessian最大的特征值)的稳定边缘(EOS)阶段不再像传统优化一样行为。清晰度稳定在$ 2/$ LR的左右,并且在迭代中损失不断上下,但仍有整体下降趋势。当前的论文数学分析了EOS阶段中隐式正则化的新机制,因此,由于非平滑损失景观而导致的GD更新沿着最小损失的多种流量进行了一些确定性流程发展。这与许多先前关于隐式偏差依靠无限更新或梯度中的噪声的结果相反。正式地,对于具有某些规律性条件的任何平滑函数$ l $,对于(1)标准化的GD,即具有不同的lr $ \ eta_t = \ frac {\ eta} {||的GD证明了此效果。 \ nabla l(x(t))||} $和损失$ l $; (2)具有常数LR和损失$ \ sqrt {l- \ min_x l(x)} $的GD。两者都可以证明进入稳定性的边缘,在歧管上相关的流量最小化$ \ lambda_ {1}(\ nabla^2 l)$。一项实验研究证实了上述理论结果。
translated by 谷歌翻译
了解通过随机梯度下降(SGD)训练的神经网络的特性是深度学习理论的核心。在这项工作中,我们采取了平均场景,并考虑通过SGD培训的双层Relu网络,以实现一个非变量正则化回归问题。我们的主要结果是SGD偏向于简单的解决方案:在收敛时,Relu网络实现输入的分段线性图,以及“结”点的数量 - 即,Relu网络估计器的切线变化的点数 - 在两个连续的训练输入之间最多三个。特别地,随着网络的神经元的数量,通过梯度流的解决方案捕获SGD动力学,并且在收敛时,重量的分布方法接近相关的自由能量的独特最小化器,其具有GIBBS形式。我们的主要技术贡献在于分析了这一最小化器产生的估计器:我们表明其第二阶段在各地消失,除了代表“结”要点的一些特定地点。我们还提供了经验证据,即我们的理论预测的不同可能发生与数据点不同的位置的结。
translated by 谷歌翻译
计算科学和统计推断中的许多应用都需要计算有关具有未知归一化常数的复杂高维分布以及这些常数的估计。在这里,我们开发了一种基于从简单的基本分布生成样品,沿着速度场生成的流量运输的方法,并沿这些流程线执行平均值。这种非平衡重要性采样(NEIS)策略是直接实施的,可用于具有任意目标分布的计算。在理论方面,我们讨论了如何将速度场定制到目标,并建立所提出的估计器是一个完美的估计器,具有零变化。我们还通过将基本分布映射到目标上,通过传输图绘制了NEIS和方法之间的连接。在计算方面,我们展示了如何使用深度学习来代表神经网络,并将其训练为零方差最佳。这些结果在高维示例上进行了数值说明,我们表明训练速度场可以将NEIS估计量的方差降低至6个数量级,而不是Vanilla估计量。我们还表明,NEIS在这些示例上的表现要比NEAL的退火重要性采样(AIS)更好。
translated by 谷歌翻译
了解随机梯度下降(SGD)的隐式偏见是深度学习的关键挑战之一,尤其是对于过度透明的模型,损失功能的局部最小化$ l $可以形成多种多样的模型。从直觉上讲,SGD $ \ eta $的学习率很小,SGD跟踪梯度下降(GD),直到它接近这种歧管为止,梯度噪声阻止了进一步的收敛。在这样的政权中,Blanc等人。 (2020)证明,带有标签噪声的SGD局部降低了常规术语,损失的清晰度,$ \ mathrm {tr} [\ nabla^2 l] $。当前的论文通过调整Katzenberger(1991)的想法提供了一个总体框架。它原则上允许使用随机微分方程(SDE)描述参数的限制动力学的SGD围绕此歧管的正规化效应(即“隐式偏见”)的正则化效应,这是由损失共同确定的功能和噪声协方差。这产生了一些新的结果:(1)与Blanc等人的局部分析相比,对$ \ eta^{ - 2} $ steps有效的隐性偏差进行了全局分析。 (2020)仅适用于$ \ eta^{ - 1.6} $ steps和(2)允许任意噪声协方差。作为一个应用程序,我们以任意大的初始化显示,标签噪声SGD始终可以逃脱内核制度,并且仅需要$ o(\ kappa \ ln d)$样本用于学习$ \ kappa $ -sparse $ -sparse yroverparame parametrized linearized Linear Modal in $ \ Mathbb {r}^d $(Woodworth等,2020),而GD在内核制度中初始化的GD需要$ \ omega(d)$样本。该上限是最小值的最佳,并改善了先前的$ \ tilde {o}(\ kappa^2)$上限(Haochen等,2020)。
translated by 谷歌翻译
在深度学习中的优化分析是连续的,专注于(变体)梯度流动,或离散,直接处理(变体)梯度下降。梯度流程可符合理论分析,但是风格化并忽略计算效率。它代表梯度下降的程度是深度学习理论的一个开放问题。目前的论文研究了这个问题。将梯度下降视为梯度流量初始值问题的近似数值问题,发现近似程度取决于梯度流动轨迹周围的曲率。然后,我们表明,在具有均匀激活的深度神经网络中,梯度流动轨迹享有有利的曲率,表明它们通过梯度下降近似地近似。该发现允许我们将深度线性神经网络的梯度流分析转换为保证梯度下降,其几乎肯定会在随机初始化下有效地收敛到全局最小值。实验表明,在简单的深度神经网络中,具有传统步长的梯度下降确实接近梯度流。我们假设梯度流动理论将解开深入学习背后的奥秘。
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
我们研究了二阶算法混合牛顿方法和惯性梯度下降的渐近行为在非凸景观中。我们表明,尽管牛顿行为这些方法,但它们几乎总是逃脱严格的马鞍点。我们还证明了这些方法的超级参数在其定性行为附近关键点的定性行为发挥作用。理论结果由数字插图支持。
translated by 谷歌翻译
连续约束满意度问题(CCSP)是一个约束满意度问题(CSP),其间隔域$ u \ subset \ mathbb {r} $。我们进行了一项系统的研究,以对CCSP进行分类,这些CCSP已完成现实的存在理论,即ER完整。为了定义该类别,我们首先考虑ETR问题,该问题也代表了真实的存在理论。在此问题的情况下,我们给出了$ \ compant x_1,\ ldots,x_n \ in \ mathbb {r}的某个句子:\ phi(x_1,\ ldots,x_n)$,其中$ \ phi $ is由符号$ \ {0、1, +,\ cdot,\ geq,>,\ wedge,\ vee,\ neg \} $组成的符号符号的公式正确。 。现在,ER是所有问题的家族,这些家族允许多项式时间降低到ETR。众所周知,np $ \ subseteq $ er $ \ subseteq $ pspace。我们将注意力限制在CCSP上,并具有附加限制($ x + y = z $)和其他一些轻度的技术状况。以前,已经显示出乘法约束($ x \ cdot y = z $),平方约束($ x^2 = y $)或反转约束($ x \ cdot y = 1 $)足以建立ER-完整性。如下所示,我们以最大的平等约束来扩展这一点。我们表明,CCSP(具有附加限制和其他轻度技术状况)具有任何一个表现良好的弯曲平等约束($ f(x,y)= 0 $)的CCSP是ER的曲线限制($ F(x,y)= 0 $)。我们将结果进一步扩展到不平等约束。我们表明,任何行为良好的凸出弯曲且行为良好的凹陷弯曲的不平等约束($ f(x,y)\ geq 0 $ and $ g(x,x,y)\ geq 0 $)暗示着班级的ER完整性这种CCSP。
translated by 谷歌翻译
Wassersein梯度流通概率措施在各种优化问题中发现了许多应用程序。它们通常由于由涉及梯度型电位的一些平均场相互作用而发展的可交换粒子系统的连续极限。然而,在许多问题中,例如在多层神经网络中,所谓的粒子是在节点可更换的大图上的边缘权重。已知这样的大图可以收敛到连续的限制,称为Graphons,因为它们的大小增长到无穷大。我们表明,边缘权重的合适功能的欧几里德梯度流量会聚到可以被适当地描述为梯度流的曲线上的曲线给出的新型连续轴限制,或者更重要的是最大斜率的曲线。我们的设置涵盖了诸如同性恋功能和标量熵的石墨源上的几种自然功能,并详细介绍了示例。
translated by 谷歌翻译
在本说明中,我们研究了如何使用单个隐藏层和RELU激活的神经网络插值数据,该数据是从径向对称分布中的,目标标签1处的目标标签1和单位球外部0,如果单位球内没有标签。通过重量衰减正则化和无限神经元的无限数据限制,我们证明存在独特的径向对称最小化器,其重量衰减正常器和Lipschitz常数分别为$ d $和$ \ sqrt {d} $。我们此外表明,如果标签$ 1 $强加于半径$ \ varepsilon $,而不仅仅是源头,则重量衰减正规剂会在$ d $中成倍增长。相比之下,具有两个隐藏层的神经网络可以近似目标函数,而不会遇到维度的诅咒。
translated by 谷歌翻译
In this work we study the asymptotic consistency of the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy) in the identification of differential equations from noisy samples of solutions. We prove that the WSINDy estimator is unconditionally asymptotically consistent for a wide class of models which includes the Navier-Stokes equations and the Kuramoto-Sivashinsky equation. We thus provide a mathematically rigorous explanation for the observed robustness to noise of weak-form equation learning. Conversely, we also show that in general the WSINDy estimator is only conditionally asymptotically consistent, yielding discovery of spurious terms with probability one if the noise level is above some critical threshold and the nonlinearities exhibit sufficiently fast growth. We derive explicit bounds on the critical noise threshold in the case of Gaussian white noise and provide an explicit characterization of these spurious terms in the case of trigonometric and/or polynomial model nonlinearities. However, a silver lining to this negative result is that if the data is suitably denoised (a simple moving average filter is sufficient), then we recover unconditional asymptotic consistency on the class of models with locally-Lipschitz nonlinearities. Altogether, our results reveal several important aspects of weak-form equation learning which may be used to improve future algorithms. We demonstrate our results numerically using the Lorenz system, the cubic oscillator, a viscous Burgers growth model, and a Kuramoto-Sivashinsky-type higher-order PDE.
translated by 谷歌翻译
现代统计应用常常涉及最小化可能是非流动和/或非凸起的目标函数。本文侧重于广泛的Bregman-替代算法框架,包括本地线性近似,镜像下降,迭代阈值,DC编程以及许多其他实例。通过广义BREGMAN功能的重新发出使我们能够构建合适的误差测量并在可能高维度下建立非凸起和非凸起和非球形目标的全球收敛速率。对于稀疏的学习问题,在一些规律性条件下,所获得的估算器作为代理人的固定点,尽管不一定是局部最小化者,但享受可明确的统计保障,并且可以证明迭代顺序在所需的情况下接近统计事实准确地快速。本文还研究了如何通过仔细控制步骤和放松参数来设计基于适应性的动力的加速度而不假设凸性或平滑度。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
我们提出了一种基于langevin扩散的算法,以在球体的产物歧管上进行非凸优化和采样。在对数Sobolev不平等的情况下,我们根据Kullback-Leibler Divergence建立了有限的迭代迭代收敛到Gibbs分布的保证。我们表明,有了适当的温度选择,可以保证,次级最小值的次数差距很小,概率很高。作为一种应用,我们考虑了使用对角线约束解决半决赛程序(SDP)的burer- monteiro方法,并分析提出的langevin算法以优化非凸目标。特别是,我们为Burer建立了对数Sobolev的不平等现象 - 当没有虚假的局部最小值时,但在鞍点下,蒙蒂罗问题。结合结果,我们为SDP和最大切割问题提供了全局最佳保证。更确切地说,我们证明了Langevin算法在$ \ widetilde {\ omega}(\ epsilon^{ - 5})$ tererations $ tererations $ \ widetilde {\ omega}(\ omega}中,具有很高的概率。
translated by 谷歌翻译
引入了归一化层(例如,批处理归一化,层归一化),以帮助在非常深的网中获得优化困难,但它们显然也有助于概括,即使在不太深入的网中也是如此。由于长期以来的信念,即最小的最小值导致更好的概括,本文提供了数学分析和支持实验,这表明归一化(与伴随的重量赛一起)鼓励GD降低损失表面的清晰度。鉴于损失是标准不变的,这是标准化的已知结果,因此仔细地定义了“清晰度”。具体而言,对于具有归一化的相当广泛的神经网类,我们的理论解释了有限学习率的GD如何进入所谓的稳定边缘(EOS)制度,并通过连续的清晰度来表征GD的轨迹 - 还原流。
translated by 谷歌翻译
本论文主要涉及解决深层(时间)高斯过程(DGP)回归问题的状态空间方法。更具体地,我们代表DGP作为分层组合的随机微分方程(SDES),并且我们通过使用状态空间过滤和平滑方法来解决DGP回归问题。由此产生的状态空间DGP(SS-DGP)模型生成丰富的电视等级,与建模许多不规则信号/功能兼容。此外,由于他们的马尔可道结构,通过使用贝叶斯滤波和平滑方法可以有效地解决SS-DGPS回归问题。本论文的第二次贡献是我们通过使用泰勒力矩膨胀(TME)方法来解决连续离散高斯滤波和平滑问题。这诱导了一类滤波器和SmooThers,其可以渐近地精确地预测随机微分方程(SDES)解决方案的平均值和协方差。此外,TME方法和TME过滤器和SmoOthers兼容模拟SS-DGP并解决其回归问题。最后,本文具有多种状态 - 空间(深)GPS的应用。这些应用主要包括(i)来自部分观察到的轨迹的SDES的未知漂移功能和信号的光谱 - 时间特征估计。
translated by 谷歌翻译
Recently, there has been great interest in connections between continuous-time dynamical systems and optimization algorithms, notably in the context of accelerated methods for smooth and unconstrained problems. In this paper we extend this perspective to nonsmooth and constrained problems by obtaining differential inclusions associated to novel accelerated variants of the alternating direction method of multipliers (ADMM). Through a Lyapunov analysis, we derive rates of convergence for these dynamical systems in different settings that illustrate an interesting tradeoff between decaying versus constant damping strategies. We also obtain perturbed equations capturing fine-grained details of these methods, which have improved stability and preserve the leading order convergence rates.
translated by 谷歌翻译