The Transformer is an extremely powerful and prominent deep learning architecture. In this work, we challenge the commonly held belief in deep learning that going deeper is better, and show an alternative design approach that is building wider attention Transformers. We demonstrate that wide single layer Transformer models can compete with or outperform deeper ones in a variety of Natural Language Processing (NLP) tasks when both are trained from scratch. The impact of changing the model aspect ratio on Transformers is then studied systematically. This ratio balances the number of layers and the number of attention heads per layer while keeping the total number of attention heads and all other hyperparameters constant. On average, across 4 NLP tasks and 10 attention types, single layer wide models perform 0.3% better than their deep counterparts. We show an in-depth evaluation and demonstrate how wide models require a far smaller memory footprint and can run faster on commodity hardware, in addition, these wider models are also more interpretable. For example, a single layer Transformer on the IMDb byte level text classification has 3.1x faster inference latency on a CPU than its equally accurate deeper counterpart, and is half the size. We therefore put forward wider and shallower models as a viable and desirable alternative for small models on NLP tasks, and as an important area of research for domains beyond this.
translated by 谷歌翻译
Transformers do not scale very well to long sequence lengths largely because of quadratic self-attention complexity. In the recent months, a wide spectrum of efficient, fast Transformers have been proposed to tackle this problem, more often than not claiming superior or comparable model quality to vanilla Transformer models. To this date, there is no well-established consensus on how to evaluate this class of models. Moreover, inconsistent benchmarking on a wide spectrum of tasks and datasets makes it difficult to assess relative model quality amongst many models. This paper proposes a systematic and unified benchmark, Long-Range Arena, specifically focused on evaluating model quality under long-context scenarios. Our benchmark is a suite of tasks consisting of sequences ranging from 1K to 16K tokens, encompassing a wide range of data types and modalities such as text, natural, synthetic images, and mathematical expressions requiring similarity, structural, and visual-spatial reasoning. We systematically evaluate ten well-established long-range Transformer models (Reformers, Linformers, Linear Transformers, Sinkhorn Transformers, Performers, Synthesizers, Sparse Transformers, and Longformers) on our newly proposed benchmark suite. Long-Range Arena paves the way towards better understanding this class of efficient Transformer models, facilitates more research in this direction, and presents new challenging tasks to tackle. Our benchmark code will be released at https://github.com/google-research/long-range-arena.
translated by 谷歌翻译
变形金刚在语言和视觉域中取得了成功。然而,将它们缩放到长期序列(例如长)或高分辨率图像,因为自我关注机构相对于输入序列长度具有二次时间和存储器复杂性。在本文中,我们提出了长短变压器(变压器-LS),是一种有效的自我关注机制,用于对语言和视觉任务进行线性复杂性建模的长序列。它用动态投影聚集了一种新的远程关注,以模拟远处相关性和短期注意,以捕获细粒度的局部相关性。我们提出了双重正径策略,以解释两个注意机制之间的规模不匹配。变压器-LS可以应用于自回归和双向模型,而无需额外复杂。我们的方法在语言和视觉域中的多个任务中优于最先进的模型,包括远程竞技场基准,自回归语言建模和想象成分类。例如,变换器-LS使用比以前的方法的一半在eNWIK8上实现0.97测试BPC,同时与其在同一硬件上的全部关注版本相比,可以更快地处理3倍。在Imagenet上,它可以获得最先进的结果(例如,适度大小的55.8M模型,仅在224x224 Imagenet-1K上培训,可以获得顶级1精度84.1%),同时在高分辨率上更加可扩展图片。源代码和模型在https://github.com/nvidia/transformer-ls上发布。
translated by 谷歌翻译
基于变压器的语言模型利用注意机制在几乎所有自然语言处理(NLP)任务中进行大量绩效改进。在其他几个领域也广泛研究了类似的关注结构。尽管注意力机制可显着增强模型的性能,但其二次复杂性阻止了长序列的有效处理。最近的工作着重于消除计算效率低下的缺点,并表明基于变压器的模型仍然可以在没有注意力层的情况下达到竞争结果。一项开创性的研究提出了FNET,该研究将注意力层取代了变压器编码器体系结构中的傅立叶变换(FT)。 FNET通过消除注意机制的计算负担来加速训练过程,在加速训练过程的同时,实现了有关原始变压器编码器模型的竞争性能。但是,FNET模型忽略了FT的基本特性,可以利用经典信号处理,以进一步提高模型效率。我们提出了不同的方法,以有效地部署FT在变压器编码器模型中。我们提出的架构具有较少的模型参数,较短的培训时间,较少的内存使用情况以及一些额外的性能改进。我们通过对共同基准的广泛实验来证明这些改进。
translated by 谷歌翻译
变压器注意机制的二次计算和内存复杂性限制了对长序列建模的可扩展性。在本文中,我们提出了Luna,一种线性统一嵌套关注机制,使Softmax注意力具有两个嵌套线性关注功能,仅产生线性(与二次)的时间和空间复杂度相反。具体地,通过第一注意功能,LUNA将输入序列包装成固定长度的序列。然后,使用第二关注功能未包装包装序列。与更传统的关注机制相比,LUNA引入具有固定长度的附加序列作为输入和额外的相应输出,允许LUNA线性地进行关注操作,同时还存储足够的上下文信息。我们对三个序列建模任务的基准进行了广泛的评估:长上下文序列建模,神经机平移和大型预磨损的屏蔽语言建模。竞争甚至更好的实验结果表明了Luna的有效性和效率与各种各样相比
translated by 谷歌翻译
在本文中,我们建议将广泛应用于基于变压器的模型广泛应用的DOT产品成对匹配层,对于模型性能是多余的。在其原始配方中的注意力必须被视为人类水平工具,以探索和/或可视化序列中的相关性分数。相反,我们在没有任何近似的情况下展示了一个简单而快速的替代方案,即据我们所知,从远程竞技场基准测试的几个任务上胜过现有的注意近似。
translated by 谷歌翻译
随着变压器作为语言处理的标准及其在计算机视觉方面的进步,参数大小和培训数据的数量相应地增长。许多人开始相信,因此,变形金刚不适合少量数据。这种趋势引起了人们的关注,例如:某些科学领域中数据的可用性有限,并且排除了该领域研究资源有限的人。在本文中,我们旨在通过引入紧凑型变压器来提出一种小规模学习的方法。我们首次表明,具有正确的尺寸,卷积令牌化,变压器可以避免在小数据集上过度拟合和优于最先进的CNN。我们的模型在模型大小方面具有灵活性,并且在获得竞争成果的同时,参数可能仅为0.28亿。当在CIFAR-10上训练Cifar-10,只有370万参数训练时,我们的最佳模型可以达到98%的准确性,这是与以前的基于变形金刚的模型相比,数据效率的显着提高,比其他变压器小于10倍,并且是15%的大小。在实现类似性能的同时,重新NET50。 CCT还表现优于许多基于CNN的现代方法,甚至超过一些基于NAS的方法。此外,我们在Flowers-102上获得了新的SOTA,具有99.76%的TOP-1准确性,并改善了Imagenet上现有基线(82.71%精度,具有29%的VIT参数)以及NLP任务。我们针对变压器的简单而紧凑的设计使它们更可行,可以为那些计算资源和/或处理小型数据集的人学习,同时扩展了在数据高效变压器中的现有研究工作。我们的代码和预培训模型可在https://github.com/shi-labs/compact-transformers上公开获得。
translated by 谷歌翻译
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train. 1
translated by 谷歌翻译
变形金刚是文本理解的强大模型。然而,由于其二次复杂性对输入序列长度的二次复杂性效率低下。虽然有很多关于变压器加速的方法,但它们仍然效率低于长序列或不够有效。在本文中,我们提出了FastFormer,即基于添加剂关注的高效变压器模型。在FastFormer中,我们首先使用添加剂注意机制来模拟全局上下文,而不是在令牌之间建模的成对相互建模,而不是建模。然后,基于与全局上下文表示的交互,进一步转换每个令牌表示。以这种方式,FastFormer可以实现具有线性复杂性的有效上下文建模。关于五个数据集的广泛实验表明,FastFormer比许多现有的变压器模型更有效,同时可以实现可比或甚至更好的长文本建模性能。
translated by 谷歌翻译
在这项工作中,我们介绍了内核化变压器,这是一个通用,可扩展的,数据驱动的框架,用于学习变压器中的内核功能。我们的框架将变压器内核作为光谱特征图之间的点产物近似,并通过学习光谱分布来学习内核。这不仅有助于学习通用的内核端到端,而且还可以减少变压器从二次到线性的时间和空间复杂性。我们表明,在准确性和计算效率方面,内核化的变压器实现了与现有的有效变压器体系结构相当的性能。我们的研究还表明,内核的选择对性能有重大影响,而内核学习变体是固定内核变压器的竞争替代方案,无论是长时间的序列任务。
translated by 谷歌翻译
尽管图像变形金刚与计算机视觉任务中的卷积神经网络显示出竞争性结果,但缺乏诸如区域的电感偏见仍然在模型效率方面构成问题,尤其是对于嵌入式应用程序而言。在这项工作中,我们通过引入注意力面具以将空间位置纳入自我发挥作用来解决这个问题。局部依赖性有效地捕获了掩盖的注意力头,以及由未掩盖的注意力头部捕获的全球依赖性。随着蒙版注意力图像变压器 - MAIT,与CAIT相比,TOP -1的准确性提高了1.7%,与SWIN相比,吞吐量更少,吞吐量提高了1.5倍。使用注意力面罩编码局部性是模型的不可知论,因此它适用于整体,分层或其他新型变压器体系结构。
translated by 谷歌翻译
事实证明,构象异构体在许多语音处理任务中都是有效的。它结合了使用卷积和使用自我注意的全球依赖性提取本地依赖的好处。受此启发,我们提出了一个更灵活,可解释和可自定义的编码器替代方案,分支机构,并在端到端语音处理中对各种远程依赖关系进行建模。在每个编码器层中,一个分支都采用自我注意事项或其变体来捕获远程依赖性,而另一个分支则利用带有卷积门控(CGMLP)的MLP模块来提取局部关系。我们对几种语音识别和口语理解基准进行实验。结果表明,我们的模型优于变压器和CGMLP。它还与构象异构体获得的最先进结果相匹配。此外,由于两分支结构,我们展示了减少计算的各种策略,包括在单个训练有素的模型中具有可变的推理复杂性的能力。合并分支的权重表明如何在不同层中使用本地和全球依赖性,从而使模型设计受益。
translated by 谷歌翻译
We design a family of image classification architectures that optimize the trade-off between accuracy and efficiency in a high-speed regime. Our work exploits recent findings in attention-based architectures, which are competitive on highly parallel processing hardware. We revisit principles from the extensive literature on convolutional neural networks to apply them to transformers, in particular activation maps with decreasing resolutions. We also introduce the attention bias, a new way to integrate positional information in vision transformers.As a result, we propose LeVIT: a hybrid neural network for fast inference image classification. We consider different measures of efficiency on different hardware platforms, so as to best reflect a wide range of application scenarios. Our extensive experiments empirically validate our technical choices and show they are suitable to most architectures. Overall, LeViT significantly outperforms existing convnets and vision transformers with respect to the speed/accuracy tradeoff. For example, at 80% ImageNet top-1 accuracy, LeViT is 5 times faster than EfficientNet on CPU. We release the code at https: //github.com/facebookresearch/LeViT.
translated by 谷歌翻译
变压器模型已经取得了有希望的自然语言处理(NLP)任务,包括提取问题应答(QA)。 NLP任务中使用的通用变压器编码器在所有层中处理上下文段落中所有输入令牌的隐藏状态。但是,与序列分类等其他任务不同,应答所提出的问题不一定需要上下文段落中的所有令牌。在此动机之后,我们提出了薄块撇子,这将在更高的隐藏层中略微浏览不必要的上下文,以改善和加速变压器性能。块撇屏的关键概念是识别必须进一步处理的上下文,并且可以在推理期间早期安全地丢弃的语言。批判性地,我们发现这些信息可以充分地从变压器模型内的自我注意重量得出。我们进一步将对应于下层的不必要位置对应的隐藏状态,实现了显着的推理时间加速。令我们惊讶的是,我们观察到这种方式修剪的模型优于他们的全尺寸对应物。 Block-Skim在不同数据集上提高了QA模型的准确性,并在BERT-Base模型上实现了3次加速。
translated by 谷歌翻译
状态空间模型已显示在建模远距离依赖性方面有效,特别是序列分类任务。在这项工作中,我们着重于对英语书籍,GitHub源代码和Arxiv数学文章的自回旋序列建模。基于围绕封闭激活功能的有效性的最新发展,我们提出了一个名为“封闭状态空间(GSS)”的新层,并表明它的训练速度明显快于TPU的S4(即DSS)的对角线版本,具有相当竞争力 - 基于变压器的基线,并表现出零击向更长的输入,同时直接实施。最后,我们表明,利用自我意见来建模局部依赖性,可以进一步提高GSS的性能。
translated by 谷歌翻译
分层结构在最近的视觉变压器中很受欢迎,但是,它们需要复杂的设计和大规模的数据集。在本文中,我们探讨了在非重叠图像块上嵌套基本本地变压器的想法,并以分层方式聚合它们。我们发现块聚合函数在启用跨块非本地信息通信方面发挥着关键作用。此观察导致我们设计简化的架构,该架构需要在原始视觉变压器上更改次要代码。拟议的明智选择的设计的好处是三倍:(1)巢汇聚速度更快,需要更少的培训数据,以实现对图中的良好的概率和小型数据集如CiFAR; (2)在将关键思想扩展到图像生成时,巢导致强大的解码器,这是8美元\时代比以前的基于变压器的发电机更快; (3)我们展示通过我们设计中的这种嵌套层次结构解耦了特征学习和抽象过程,使得能够构建一种新的方法(命名的Gradcat),用于视觉解释学习模型。源代码可用https://github.com/google-research/nested-transformer。
translated by 谷歌翻译
Transformer models have achieved superior performance in various natural language processing tasks. However, the quadratic computational cost of the attention mechanism limits its practicality for long sequences. There are existing attention variants that improve the computational efficiency, but they have limited ability to effectively compute global information. In parallel to Transformer models, state space models (SSMs) are tailored for long sequences, but they are not flexible enough to capture complicated local information. We propose SPADE, short for $\underline{\textbf{S}}$tate s$\underline{\textbf{P}}$ace $\underline{\textbf{A}}$ugmente$\underline{\textbf{D}}$ Transform$\underline{\textbf{E}}$r. Specifically, we augment a SSM into the bottom layer of SPADE, and we employ efficient local attention methods for the other layers. The SSM augments global information, which complements the lack of long-range dependency issue in local attention methods. Experimental results on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method. To further demonstrate the scalability of SPADE, we pre-train large encoder-decoder models and present fine-tuning results on natural language understanding and natural language generation tasks.
translated by 谷歌翻译
大型神经模型的培训和推断很昂贵。但是,对于许多应用程序域,虽然新任务和模型经常出现,但建模的基础文档主要保持不变。我们研究如何通过嵌入回收利用(ER)来降低此类设置的计算成本:在执行训练或推理时从以前的模型中重新使用激活。与以前的工作相反,重点是冻结小型分类头进行填充,这通常会导致绩效显着下降,我们提出了从预告片的模型中缓存中间层的输出,并为新任务的剩余层进行填充。我们表明,我们的方法在训练过程中提供了100%的速度和55-86%的推理,并且对科学领域中文本分类和实体识别任务的准确性产生了可观的影响。对于通用域的问答任务,ER提供了类似的加速和少量准确性。最后,我们确定了ER的几个开放挑战和未来的方向。
translated by 谷歌翻译
变压器注意机制中的设计选择,包括弱电感偏置和二次计算复杂性,限制了其用于建模长序列的应用。在本文中,我们介绍了一个简单的,理论上的,单头的门控注意机制,配备了(指数)移动平均线,以将局部依赖性的电感偏置纳入位置 - 敏锐的注意机制中。我们进一步提出了一个具有线性时间和空间复杂性的大型变体,但通过将整个序列分为固定长度的多个块,仅产生最小的质量损失。对广泛的序列建模基准测试的广泛实验,包括远距离竞技场,神经机器翻译,自动回归语言建模以及图像和语音分类,表明,巨人比其他序列模型取得了重大改进,包括变种物的变体和最新的变体模型状态空间模型。
translated by 谷歌翻译
视觉变压器(VIT)用作强大的视觉模型。与卷积神经网络不同,在前几年主导视觉研究,视觉变压器享有捕获数据中的远程依赖性的能力。尽管如此,任何变压器架构的组成部分,自我关注机制都存在高延迟和低效的内存利用,使其不太适合高分辨率输入图像。为了缓解这些缺点,分层视觉模型在非交错的窗口上局部使用自我关注。这种放松会降低输入尺寸的复杂性;但是,它限制了横窗相互作用,损害了模型性能。在本文中,我们提出了一种新的班次不变的本地注意层,称为查询和参加(QNA),其以重叠的方式聚集在本地输入,非常类似于卷积。 QNA背后的关键想法是介绍学习的查询,这允许快速高效地实现。我们通过将其纳入分层视觉变压器模型来验证我们的层的有效性。我们展示了速度和内存复杂性的改进,同时实现了与最先进的模型的可比准确性。最后,我们的图层尺寸尤其良好,窗口大小,需要高于X10的内存,而不是比现有方法更快。
translated by 谷歌翻译