Prostate cancer is the most common cancer in men worldwide and the second leading cause of cancer death in the United States. One of the prognostic features in prostate cancer is the Gleason grading of histopathology images. The Gleason grade is assigned based on tumor architecture on Hematoxylin and Eosin (H&E) stained whole slide images (WSI) by the pathologists. This process is time-consuming and has known interobserver variability. In the past few years, deep learning algorithms have been used to analyze histopathology images, delivering promising results for grading prostate cancer. However, most of the algorithms rely on the fully annotated datasets which are expensive to generate. In this work, we proposed a novel weakly-supervised algorithm to classify prostate cancer grades. The proposed algorithm consists of three steps: (1) extracting discriminative areas in a histopathology image by employing the Multiple Instance Learning (MIL) algorithm based on Transformers, (2) representing the image by constructing a graph using the discriminative patches, and (3) classifying the image into its Gleason grades by developing a Graph Convolutional Neural Network (GCN) based on the gated attention mechanism. We evaluated our algorithm using publicly available datasets, including TCGAPRAD, PANDA, and Gleason 2019 challenge datasets. We also cross validated the algorithm on an independent dataset. Results show that the proposed model achieved state-of-the-art performance in the Gleason grading task in terms of accuracy, F1 score, and cohen-kappa. The code is available at https://github.com/NabaviLab/Prostate-Cancer.
translated by 谷歌翻译
组织病理学图像包含丰富的表型信息和病理模式,这是疾病诊断的黄金标准,对于预测患者预后和治疗结果至关重要。近年来,在临床实践中迫切需要针对组织病理学图像的计算机自动化分析技术,而卷积神经网络代表的深度学习方法已逐渐成为数字病理领域的主流。但是,在该领域获得大量细粒的注释数据是一项非常昂贵且艰巨的任务,这阻碍了基于大量注释数据的传统监督算法的进一步开发。最新的研究开始从传统的监督范式中解放出来,最有代表性的研究是基于弱注释,基于有限的注释的半监督学习范式以及基于自我监督的学习范式的弱监督学习范式的研究图像表示学习。这些新方法引发了针对注释效率的新自动病理图像诊断和分析。通过对130篇论文的调查,我们对从技术和方法论的角度来看,对计算病理学领域中有关弱监督学习,半监督学习以及自我监督学习的最新研究进行了全面的系统综述。最后,我们提出了这些技术的关键挑战和未来趋势。
translated by 谷歌翻译
乳腺癌是女性最常见的恶性肿瘤,每年负责超过50万人死亡。因此,早期和准确的诊断至关重要。人类专业知识是诊断和正确分类乳腺癌并定义适当的治疗,这取决于评价不同生物标志物如跨膜蛋白受体HER2的表达。该评估需要几个步骤,包括免疫组织化学或原位杂交等特殊技术,以评估HER2状态。通过降低诊断中的步骤和人类偏差的次数的目标,赫洛挑战是组织的,作为第16届欧洲数字病理大会的并行事件,旨在自动化仅基于苏木精和曙红染色的HER2地位的评估侵袭性乳腺癌的组织样本。评估HER2状态的方法是在全球21个团队中提出的,并通过一些提议的方法实现了潜在的观点,以推进最先进的。
translated by 谷歌翻译
Graph convolutional neural networks have shown significant potential in natural and histopathology images. However, their use has only been studied in a single magnification or multi-magnification with late fusion. In order to leverage the multi-magnification information and early fusion with graph convolutional networks, we handle different embedding spaces at each magnification by introducing the Multi-Scale Relational Graph Convolutional Network (MS-RGCN) as a multiple instance learning method. We model histopathology image patches and their relation with neighboring patches and patches at other scales (i.e., magnifications) as a graph. To pass the information between different magnification embedding spaces, we define separate message-passing neural networks based on the node and edge type. We experiment on prostate cancer histopathology images to predict the grade groups based on the extracted features from patches. We also compare our MS-RGCN with multiple state-of-the-art methods with evaluations on both source and held-out datasets. Our method outperforms the state-of-the-art on both datasets and especially on the classification of grade groups 2 and 3, which are significant for clinical decisions for patient management. Through an ablation study, we test and show the value of the pertinent design features of the MS-RGCN.
translated by 谷歌翻译
使用深度学习模型从组织学数据中诊断癌症提出了一些挑战。这些图像中关注区域(ROI)的癌症分级和定位通常依赖于图像和像素级标签,后者需要昂贵的注释过程。深度弱监督的对象定位(WSOL)方法为深度学习模型的低成本培训提供了不同的策略。仅使用图像级注释,可以训练这些方法以对图像进行分类,并为ROI定位进行分类类激活图(CAM)。本文综述了WSOL的​​最先进的DL方法。我们提出了一种分类法,根据模型中的信息流,将这些方法分为自下而上和自上而下的方法。尽管后者的进展有限,但最近的自下而上方法目前通过深层WSOL方法推动了很多进展。早期作品的重点是设计不同的空间合并功能。但是,这些方法达到了有限的定位准确性,并揭示了一个主要限制 - 凸轮的不足激活导致了高假阴性定位。随后的工作旨在减轻此问题并恢复完整的对象。评估和比较了两个具有挑战性的组织学数据集的分类和本地化准确性,对我们的分类学方法进行了评估和比较。总体而言,结果表明定位性能差,特别是对于最初设计用于处理自然图像的通用方法。旨在解决组织学数据挑战的方法产生了良好的结果。但是,所有方法都遭受高假阳性/阴性定位的影响。在组织学中应用深WSOL方法的应用是四个关键的挑战 - 凸轮的激活下/过度激活,对阈值的敏感性和模型选择。
translated by 谷歌翻译
数据分析方法的组合,提高计算能力和改进的传感器可以实现定量颗粒状,基于细胞的分析。我们描述了与组织解释和调查AI方法有关的丰富应用挑战集,目前用于应对这些挑战。我们专注于一类针对性的人体组织分析 - 组织病理学 - 旨在定量表征疾病状态,患者结果预测和治疗转向。
translated by 谷歌翻译
多实例学习(MIL)是整个幻灯片图像(WSI)分类的关键算法。组织学WSIS可以具有数十亿像素,它创造了巨大的计算和注释挑战。通常,这种图像被分成一组贴片(一袋实例),其中仅提供袋级类标签。基于深度学习的MIL方法使用卷积神经网络(CNN)计算实例特征。我们所提出的方法也是基于深度学习的,随着以下两项贡献例如,肿瘤等级可以取决于WSI中不同位置的几种特定模式的存在,这需要考虑贴片之间的依赖性。其次,我们提出了基于实例伪标签的实例 - 明智函数。我们将所提出的算法与多个基线方法进行比较,在熊猫挑战数据集上评估它,该数据集是超过11K图像的最大可用的WSI数据集,并展示最先进的结果。
translated by 谷歌翻译
在病理样本的全坡度图像(WSI)中注释癌区域在临床诊断,生物医学研究和机器学习算法开发中起着至关重要的作用。但是,产生详尽而准确的注释是劳动密集型,具有挑战性和昂贵的。仅绘制粗略和近似注释是一项容易得多的任务,成本较小,并且可以减轻病理学家的工作量。在本文中,我们研究了在数字病理学中完善这些近似注释以获得更准确的问题的问题。以前的一些作品探索了从这些不准确的注释中获得机器学习模型,但是很少有人解决改进问题,在这些问题中,应该明确识别和纠正错误标签的区域,并且所有这些都需要大量的培训样本(通常很大) 。我们提出了一种名为标签清洁多个实例学习(LC-MIL)标签的方法,可在不需要外部培训数据的情况下对单个WSI进行粗略注释。从WSI裁剪的带有不准确标签的贴片在多个实例学习框架内共同处理,从而减轻了它们对预测模型的影响并完善分割。我们对具有乳腺癌淋巴结转移,肝癌和结直肠癌样品的异质WSI进行的实验表明,LC-MIL显着完善了粗糙的注释,即使从单个幻灯片中学习,LC-MIL也优于最先进的替代方案。此外,我们证明了拟议方法如何有效地完善和改进病理学家绘制的真实注释。所有这些结果表明,LC-MIL是一种有前途的,轻巧的工具,可提供从粗糙注释的病理组中提供细粒的注释。
translated by 谷歌翻译
病理诊所中癌症的诊断,预后和治疗性决策现在可以基于对多吉吉像素组织图像的分析,也称为全斜图像(WSIS)。最近,已经提出了深层卷积神经网络(CNN)来得出无监督的WSI表示。这些很有吸引力,因为它们不太依赖于繁琐的专家注释。但是,一个主要的权衡是,较高的预测能力通常以解释性为代价,这对他们的临床使用构成了挑战,通常通常期望决策中的透明度。为了应对这一挑战,我们提出了一个基于Deep CNN的手工制作的框架,用于构建整体WSI级表示。基于有关变压器在自然语言处理领域的内部工作的最新发现,我们将其过程分解为一个更透明的框架,我们称其为手工制作的组织学变压器或H2T。基于我们涉及各种数据集的实验,包括总共5,306个WSI,结果表明,与最近的最新方法相比,基于H2T的整体WSI级表示具有竞争性能,并且可以轻松用于各种下游分析任务。最后,我们的结果表明,H2T框架的最大14倍,比变压器模型快14倍。
translated by 谷歌翻译
多个实例学习(MIL)方法在数字病理学中对GIGA像素大小的全型图像(WSI)进行分类变得越来越流行。大多数MIL方法通过处理所有组织斑块,以单个WSI放大倍率运行。这样的公式诱导了高计算要求,并将WSI级表示的上下文化限制为单个量表。一些MIL方法扩展到多个量表,但在计算上要求更高。在本文中,受病理诊断过程的启发,我们提出了Zoommil,该方法学会了以端到端的方式执行多层缩放。Zoommil通过从多个增强元中汇总组织信息来构建WSI表示。所提出的方法在两个大数据集上的WSI分类中优于最先进的MIL方法,同时大大降低了关于浮点操作(FLOPS)和处理时间的计算需求,最高为40倍。
translated by 谷歌翻译
背景:宫颈癌严重影响了女性生殖系统的健康。光学相干断层扫描(OCT)作为宫颈疾病检测的非侵入性,高分辨率成像技术。然而,OCT图像注释是知识密集型和耗时的,这阻碍了基于深度学习的分类模型的培训过程。目的:本研究旨在基于自我监督学习,开发一种计算机辅助诊断(CADX)方法来对体内宫颈OCT图像进行分类。方法:除了由卷积神经网络(CNN)提取的高电平语义特征外,建议的CADX方法利用了通过对比纹理学习来利用未标记的宫颈OCT图像的纹理特征。我们在中国733名患者的多中心临床研究中对OCT图像数据集进行了十倍的交叉验证。结果:在用于检测高风险疾病的二元分类任务中,包括高级鳞状上皮病变和宫颈癌,我们的方法实现了0.9798加号或减去0.0157的面积曲线值,灵敏度为91.17加或对于OCT图像贴片,减去4.99%,特异性为93.96加仑或减去4.72%;此外,它在测试集上的四位医学专家中表现出两种。此外,我们的方法在使用交叉形阈值投票策略的118名中国患者中达到了91.53%的敏感性和97.37%的特异性。结论:所提出的基于对比 - 学习的CADX方法表现优于端到端的CNN模型,并基于纹理特征提供更好的可解释性,其在“见和治疗”的临床协议中具有很大的潜力。
translated by 谷歌翻译
乳腺癌是女性可能发生的最严重的癌症之一。通过分析组织学图像(HIS)来自动诊断乳腺癌对患者及其预后很重要。他的分类为临床医生提供了对疾病的准确了解,并使他们可以更有效地治疗患者。深度学习(DL)方法已成功地用于各种领域,尤其是医学成像,因为它们有能力自动提取功能。这项研究旨在使用他的乳腺癌对不同类型的乳腺癌进行分类。在这项研究中,我们提出了一个增强的胶囊网络,该网络使用RES2NET块和四个额外的卷积层提取多尺度特征。此外,由于使用了小的卷积内核和RES2NET块,因此所提出的方法具有较少的参数。结果,新方法的表现优于旧方法,因为它会自动学习最佳功能。测试结果表明该模型的表现优于先前的DL方法。
translated by 谷歌翻译
计算机辅助诊断数字病理学正在变得普遍存在,因为它可以提供更有效和客观的医疗保健诊断。最近的进展表明,卷积神经网络(CNN)架构是一种完善的深度学习范式,可用于设计一种用于乳腺癌检测的计算机辅助诊断(CAD)系统。然而,探索了污染变异性因污染变异性和染色常规化的影响,尚未得到很好的挑战。此外,对于高吞吐量筛选可能是重要的网络模型的性能分析,这也不适用于高吞吐量筛查,也不熟悉。要解决这一挑战,我们考虑了一些当代CNN模型,用于涉及(1)的乳房组织病理学图像的二进制分类。使用基于自适应颜色解卷积(ACD)的颜色归一化算法来处理污染归一化图像的数据以处理染色变量; (2)应用基于转移学习的一些可动性更高效的CNN模型的培训,即视觉几何组网络(VGG16),MobileNet和效率网络。我们在公开的Brankhis数据集上验证了培训的CNN网络,适用于200倍和400x放大的组织病理学图像。实验分析表明,大多数情况下预染额网络在数据增强乳房组织病理学图像中产生更好的质量,而不是污染归一化的情况。此外,我们使用污染标准化图像评估了流行轻量级网络的性能和效率,并发现在测试精度和F1分数方面,高效网络优于VGG16和MOBILENET。我们观察到在测试时间方面的效率比其他网络更好; vgg net,mobilenet,在分类准确性下没有太大降低。
translated by 谷歌翻译
病理学家通过检查载玻片上的针头活检的组织来诊断和坡度前列腺癌。癌症的严重程度和转移风险取决于格里森等级,这是基于前列腺癌腺体的组织和形态的分数。为了进行诊断检查,病理学家首先将腺体定位在整个活检核心中,如果发现癌症 - 他们分配了Gleason等级。尽管严格的诊断标准,但这种耗时的过程仍会出现错误和明显的观察者间变异性。本文提出了一个自动化的工作流程,该工作流程遵循病理学家的\ textit {modus operandi},对整个幻灯片图像(WSI)的多尺度斑块进行隔离和分类。分别对基质和腺体边界; (2)分类器网络以高放大倍数将良性与癌症分离; (3)另一个分类器可以在低放大倍率下预测每个癌症的等级。总的来说,此过程为前列腺癌分级提供了一种特定于腺体的方法,我们将其与其他基于机器学习的分级方法进行比较。
translated by 谷歌翻译
具有多吉吉像素的组织学图像产生了丰富的信息,以用于癌症诊断和预后。在大多数情况下,只能使用幻灯片级标签,因为像素的注释是劳动密集型任务。在本文中,我们提出了一条深度学习管道,以进行组织学图像中的分类。使用多个实例学习,我们试图预测基于降血石蛋白和曙红蛋白(H&E)组织学图像的鼻咽癌(NPC)的潜在膜蛋白1(LMP1)状态。我们利用了与聚合层保持剩余连接的注意机制。在我们的3倍交叉验证实验中,我们分别达到了平均准确性,AUC和F1得分为0.936、0.995和0.862。这种方法还使我们能够通过可视化注意力评分来检查模型的可解释性。据我们所知,这是使用深度学习预测NPC上LMP1状态的首次尝试。
translated by 谷歌翻译
多个实例学习(MIL)是对诊断病理学的整个幻灯片图像(WSI)进行分类的强大方法。 MIL对WSI分类的基本挑战是发现触发袋子标签的\ textit {critical Instances}。但是,先前的方法主要是在独立和相同的分布假设(\ textit {i.i.d})下设计的,忽略了肿瘤实例或异质性之间的相关性。在本文中,我们提出了一种新颖的基于多重检测的多重实例学习(MDMIL)来解决上述问题。具体而言,MDMIL是由内部查询产生模块(IQGM)和多重检测模块(MDM)构建的,并在训练过程中基于内存的对比度损失的辅助。首先,IQGM给出了实例的概率,并通过在分布分析后汇总高度可靠的功能来为后续MDM生成内部查询(IQ)。其次,在MDM中,多重检测交叉注意(MDCA)和多头自我注意力(MHSA)合作以生成WSI的最终表示形式。在此过程中,智商和可训练的变异查询(VQ)成功建立了实例之间的联系,并显着提高了模型对异质肿瘤的鲁棒性。最后,为了进一步在特征空间中实施限制并稳定训练过程,我们采用基于内存的对比损失,即使在每次迭代中有一个样本作为输入,也可以实现WSI分类。我们对三个计算病理数据集进行实验,例如CamelyOn16,TCGA-NSCLC和TCGA-RCC数据集。优越的准确性和AUC证明了我们提出的MDMIL比其他最先进方法的优越性。
translated by 谷歌翻译
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical. Previous studies employ multiple instance learning (MIL) to represent WSIs as bags of sampled patches because, for most occasions, only slide-level labels are available, and only a tiny region of the WSI is disease-positive area. However, WSI representation learning still remains an open problem due to: (1) patch sampling on a higher resolution may be incapable of depicting microenvironment information such as the relative position between the tumor cells and surrounding tissues, while patches at lower resolution lose the fine-grained detail; (2) extracting patches from giant WSI results in large bag size, which tremendously increases the computational cost. To solve the problems, this paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes. Precisely, we randomly extract instant-level patch features from WSIs with different magnification. Then a co-attention mapping between imaging and genomics is learned to uncover the pairwise interaction and reduce the space complexity of imaging features. Such early fusion makes it computationally feasible to use MIL Transformer for the survival prediction task. Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability. We evaluate our approach on five cancer types from the Cancer Genome Atlas database and achieved an average c-index of $0.673$, outperforming the state-of-the-art multimodality methods.
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
经典的多个实例学习(MIL)方法通常基于实例之间的相同和独立的分布式假设,因此忽略了个人实体以外的潜在丰富的上下文信息。另一方面,已经提出了具有全球自我发场模块的变压器来对所有实例之间的相互依赖性进行建模。但是,在本文中,我们质疑:是否需要使用自我注意力进行全球关系建模,或者我们是否可以适当地将自我注意计算限制为大规模整个幻灯片图像(WSIS)中的本地制度?我们为MIL(LA-MIL)提出了一个通用的基于局部注意力图的变压器,通过在自适应局部任意大小的自适应局部方案中明确化情境化实例,从而引入了归纳偏见。此外,有效适应的损失函数使我们可以学习表达性WSI嵌入的方法,以进行多种生物标志物的联合分析。我们证明,LA-MIL实现了最新的胃肠癌预测,从而超过了重要生物标志物(例如微卫星不稳定性的结直肠癌)的现有模型。我们的发现表明,本地自我注意力足够模型与全球模块相同的依赖性。我们的LA-MIL实施可从https://github.com/agentdr1/la_mil获得。
translated by 谷歌翻译
乳腺癌是全球女性死亡的主要原因之一。如果在高级阶段检测到很难治疗,但是,早期发现可以显着增加生存机会,并改善数百万妇女的生活。鉴于乳腺癌的普遍流行,研究界提出早期检测,分类和诊断的框架至关重要。与医生协调的人工智能研究社区正在开发此类框架以自动化检测任务。随着研究活动的激增,加上大型数据集的可用性和增强的计算能力,预计AI框架结果将有助于更多的临床医生做出正确的预测。在本文中,提出了使用乳房X线照片对乳腺癌进行分类的新框架。所提出的框架结合了从新颖的卷积神经网络(CNN)功能中提取的强大特征,以及手工制作的功能,包括猪(定向梯度的直方图)和LBP(本地二进制图案)。在CBIS-DDSM数据集上获得的结果超过了技术状态。
translated by 谷歌翻译