胶囊网络(CAPSNET)旨在将图像解析为由对象,部分及其关系组成的层次组件结构。尽管它们具有潜力,但它们在计算上还是很昂贵的,并且构成了一个主要的缺点,这限制了在更复杂的数据集中有效利用这些网络的限制。当前的CAPSNET模型仅将其性能与胶囊基线进行比较,并且在复杂任务上的基于CNN的DEEP基于DEEP基于CNN的级别的性能。本文提出了一种学习胶囊的有效方法,该胶囊通过一组子封装来检测输入图像的原子部分,并在其上投射输入向量。随后,我们提出了Wasserstein嵌入模块,该模块首先测量由子胶囊建模的输入和组件之间的差异,然后根据学习的最佳运输找到它们的对齐程度。该策略利用基于其各自的组件分布之间的相似性来定义输入和子胶囊之间的一致性的新见解。我们提出的模型(i)是轻量级的,允许将胶囊应用于更复杂的视觉任务; (ii)在这些具有挑战性的任务上的表现要好于或与基于CNN的模型相提并论。我们的实验结果表明,Wasserstein嵌入胶囊(Wecapsules)在仿射转换方面更加强大,有效地扩展到较大的数据集,并且在几个视觉任务中胜过CNN和CAPSNET模型。
translated by 谷歌翻译
使用卷积神经网络(CNN)已经显着改善了几种图像处理任务,例如图像分类和对象检测。与Reset和Abseralnet一样,许多架构在创建时至少在一个数据集中实现了出色的结果。培训的一个关键因素涉及网络的正规化,这可以防止结构过度装备。这项工作分析了在过去几年中开发的几种正规化方法,显示了不同CNN模型的显着改进。该作品分为三个主要区域:第一个称为“数据增强”,其中所有技术都侧重于执行输入数据的更改。第二个,命名为“内部更改”,旨在描述修改神经网络或内核生成的特征映射的过程。最后一个称为“标签”,涉及转换给定输入的标签。这项工作提出了与关于正则化的其他可用调查相比的两个主要差异:(i)第一个涉及在稿件中收集的论文并非超过五年,并第二个区别是关于可重复性,即所有作品此处推荐在公共存储库中可用的代码,或者它们已直接在某些框架中实现,例如Tensorflow或Torch。
translated by 谷歌翻译
尽管胶囊网络在为视觉识别任务中定义了深度神经网络中的特征之间的位置关系,但它们是计算昂贵的并且不适合于在移动设备上运行的能力。瓶颈处于胶囊之间使用的动态路由机构的计算复杂性。另一方面,诸如Xnor-Net之类的神经网络是快速和计算的高效,但由于其在二值化过程中的信息丢失,具有相对低的精度。本文通过XNorize在CAPSFC层内的动态路由外部或内部的线性投影仪来提出新的完全连接(FC)层。具体而言,我们提出的FC层有两个版本,XNODR(Xnorizing线性投影仪外部动态路由)和XNIDR(动态路由内的xnorizing线性投影仪)。要测试其泛化,我们将它们插入MobileNet V2和Reset-50分别。在三个数据集,Mnist,CiFar-10,多方派的实验验证其有效性。我们的实验结果表明,XNODR和XNIDR都有助于网络具有高精度,具有较低的拖波和更少的参数(例如,95.32 \%的精度,在2.99M参数和311.22M拖薄的CIFAR-10上)。
translated by 谷歌翻译
A capsule is a group of neurons whose activity vector represents the instantiation parameters of a specific type of entity such as an object or an object part. We use the length of the activity vector to represent the probability that the entity exists and its orientation to represent the instantiation parameters. Active capsules at one level make predictions, via transformation matrices, for the instantiation parameters of higher-level capsules. When multiple predictions agree, a higher level capsule becomes active. We show that a discrimininatively trained, multi-layer capsule system achieves state-of-the-art performance on MNIST and is considerably better than a convolutional net at recognizing highly overlapping digits. To achieve these results we use an iterative routing-by-agreement mechanism: A lower-level capsule prefers to send its output to higher level capsules whose activity vectors have a big scalar product with the prediction coming from the lower-level capsule.
translated by 谷歌翻译
生成一组高质量的对应关系或匹配是点云注册中最关键的步骤之一。本文通过共同考虑点对立的结构匹配来提出学习框架COTREG,以预测3D点云登记的对应关系。具体地,我们将这两个匹配转换为基于Wasserstein距离和基于Gromov-Wasserstein距离的优化。因此,建立对应关系的任务可以自然地重塑成耦合的最佳运输问题。此外,我们设计一个网络,以预测点云的每个点的置信度,其提供重叠区域信息以产生对应关系。我们的对应预测管道可以很容易地集成到基于学习的特征,如FCGF或FPFH等传统描述符。我们在3DMATCH,KITTI,3DCSR和ModelNet40基准上进行了全面的实验,显示了所提出的方法的最先进的性能。
translated by 谷歌翻译
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory (LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges towards the application of transformer models in computer vision.
translated by 谷歌翻译
尽管当前的显着对象检测(SOD)作品已经取得了重大进展,但在预测的显着区域的完整性方面,它们受到限制。我们在微观和宏观水平上定义了完整性的概念。具体而言,在微观层面上,该模型应突出显示属于某个显着对象的所有部分。同时,在宏观层面上,模型需要在给定图像中发现所有显着对象。为了促进SOD的完整性学习,我们设计了一个新颖的完整性认知网络(ICON),该网络探讨了学习强大完整性特征的三个重要组成部分。 1)与现有模型不同,该模型更多地集中在功能可区分性上,我们引入了各种功能集合(DFA)组件,以汇总具有各种接受场(即内核形状和背景)的特征,并增加了功能多样性。这种多样性是挖掘积分显着物体的基础。 2)基于DFA功能,我们引入了一个完整性通道增强(ICE)组件,其目标是增强功能通道,以突出积分显着对象,同时抑制其他分心的对象。 3)提取增强功能后,采用零件整体验证(PWV)方法来确定零件和整个对象特征是否具有很强的一致性。这样的部分协议可以进一步改善每个显着对象的微观完整性。为了证明我们图标的有效性,对七个具有挑战性的基准进行了全面的实验。我们的图标在广泛的指标方面优于基线方法。值得注意的是,我们的图标在六个数据集上的平均假阴影(FNR)(FNR)方面,相对于以前的最佳模型的相对改善约为10%。代码和结果可在以下网址获得:https://github.com/mczhuge/icon。
translated by 谷歌翻译
卷积神经网络(CNN)已在医学图像分割方面取得了有希望的结果。但是,CNN需要大量的培训数据,并且无法处理姿势和对象的变形。此外,它们的合并层倾向于丢弃重要信息,例如位置以及CNN对旋转和仿射转化敏感。胶囊网络是一种最新的新体系结构,通过用动态路由和卷积步伐替换池层来实现零件整体表示学习的更好的鲁棒性,这在流行任务(例如数字分类和对象细分)上显示了潜在的结果。在本文中,我们提出了一个带有卷积胶囊编码器(称为3DConvCaps)的3D编码器网络,以学习具有卷积层的低级特征(短距离注意),同时用胶囊建模更高级别的特征(远程依赖)层。我们在包括ISEG-2017,Hippocampus和Cardiac在内的多个数据集上进行的实验表明,我们的3D 3DConvcaps网络的表现非常优于先前的胶囊网络和3D-UNET。我们进一步进行了在卷积层和胶囊层的各种配置下在合同和扩展路径的各种配置下进行网络效率和分割性能的消融研究。
translated by 谷歌翻译
近年来,已经产生了大量的视觉内容,并从许多领域共享,例如社交媒体平台,医学成像和机器人。这种丰富的内容创建和共享引入了新的挑战,特别是在寻找类似内容内容的图像检索(CBIR)-A的数据库中,即长期建立的研究区域,其中需要改进的效率和准确性来实时检索。人工智能在CBIR中取得了进展,并大大促进了实例搜索过程。在本调查中,我们审查了最近基于深度学习算法和技术开发的实例检索工作,通过深网络架构类型,深度功能,功能嵌入方法以及网络微调策略组织了调查。我们的调查考虑了各种各样的最新方法,在那里,我们识别里程碑工作,揭示各种方法之间的联系,并呈现常用的基准,评估结果,共同挑战,并提出未来的未来方向。
translated by 谷歌翻译
多式化学习的任务最近看过越来越多的兴趣,因为它允许基于诸如视觉,文本和音频等不同的模态培训神经架构。培训此类模型的一个挑战是他们需要共同学习语义概念及其跨不同输入表示的关系。已经显示胶囊网络在捕获低级输入特征和更高级别概念之间的关系中表现良好。然而,由于传统路由算法的资源需求,载体到目前为止,目前仅用于小规模的完全监督设置。我们提出了一种新的多模胶囊网络,使我们能够利用大量视频数据的多模式学习框架的胶囊的强度。为了使胶囊适应大规模的输入数据,我们提出了一种通过自我关注机制提出一种新颖的路由,从而选择相关胶囊,然后选择用于产生最终关节多模峰特征表示的相关胶囊。这不仅允许使用嘈杂的视频数据的强大培训,而且还允许与传统的路由方法相比扩展胶囊网络的大小,同时仍在计算效率。我们通过在大规模的多模式视频数据集上预先预留并在两个具有挑战性的下游任务中将其应用于四个数据集来评估所提出的架构。结果表明,与其他路由技术相比,所提出的多模胶囊网络不仅能够改善结果,而且还实现了对多式化学习任务的竞争性能。
translated by 谷歌翻译
在过去的几年中,基于深度卷积神经网络(CNN)的图像识别已取得了重大进展。这主要是由于此类网络在挖掘判别对象姿势以及质地和形状的零件信息方面具有强大的能力。这通常不适合细粒度的视觉分类(FGVC),因为它由于阻塞,变形,照明等而表现出较高的类内和较低的阶层差异。表征对象/场景。为此,我们提出了一种方法,该方法可以通过汇总大多数相关图像区域的上下文感知特征及其在区分细颗粒类别中避免边界框和/或可区分的零件注释中的重要性来有效捕获细微的变化。我们的方法的灵感来自最新的自我注意力和图形神经网络(GNNS)方法的启发端到端的学习过程。我们的模型在八个基准数据集上进行了评估,该数据集由细粒对象和人类对象相互作用组成。它的表现优于最先进的方法,其识别准确性很大。
translated by 谷歌翻译
我们通过无监督学习的角度探索语义对应估计。我们使用标准化的评估协议彻底评估了最近提出的几种跨多个挑战数据集的无监督方法,在该协议中,我们会改变诸如骨干架构,预训练策略以及预训练和填充数据集等因素。为了更好地了解这些方法的故障模式,并为了提供更清晰的改进途径,我们提供了一个新的诊断框架以及一个新的性能指标,该指标更适合于语义匹配任务。最后,我们引入了一种新的无监督的对应方法,该方法利用了预训练的功能的强度,同时鼓励在训练过程中进行更好的比赛。与当前的最新方法相比,这会导致匹配性能明显更好。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
近年来,计算机视觉社区中最受欢迎的技术之一就是深度学习技术。作为一种数据驱动的技术,深层模型需要大量准确标记的培训数据,这在许多现实世界中通常是无法访问的。数据空间解决方案是数据增强(DA),可以人为地从原始样本中生成新图像。图像增强策略可能因数据集而有所不同,因为不同的数据类型可能需要不同的增强以促进模型培训。但是,DA策略的设计主要由具有领域知识的人类专家决定,这被认为是高度主观和错误的。为了减轻此类问题,一个新颖的方向是使用自动数据增强(AUTODA)技术自动从给定数据集中学习图像增强策略。 Autoda模型的目的是找到可以最大化模型性能提高的最佳DA策略。这项调查从图像分类的角度讨论了Autoda技术出现的根本原因。我们确定标准自动赛车模型的三个关键组件:搜索空间,搜索算法和评估功能。根据他们的架构,我们提供了现有图像AUTODA方法的系统分类法。本文介绍了Autoda领域的主要作品,讨论了他们的利弊,并提出了一些潜在的方向以进行未来的改进。
translated by 谷歌翻译
Deep neural networks provide unprecedented performance gains in many real world problems in signal and image processing. Despite these gains, future development and practical deployment of deep networks is hindered by their blackbox nature, i.e., lack of interpretability, and by the need for very large training sets. An emerging technique called algorithm unrolling or unfolding offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are used widely in signal processing and deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. More recently, this direction has attracted enormous attention and is rapidly growing both in theoretic investigations and practical applications. The growing popularity of unrolled deep networks is due in part to their potential in developing efficient, high-performance and yet interpretable network architectures from reasonable size training sets. In this article, we review algorithm unrolling for signal and image processing. We extensively cover popular techniques for algorithm unrolling in various domains of signal and image processing including imaging, vision and recognition, and speech processing. By reviewing previous works, we reveal the connections between iterative algorithms and neural networks and present recent theoretical results. Finally, we provide a discussion on current limitations of unrolling and suggest possible future research directions.
translated by 谷歌翻译
我们提出了一个统一的查看,即通过通用表示,一个深层神经网络共同学习多个视觉任务和视觉域。同时学习多个问题涉及最大程度地减少具有不同幅度和特征的多个损失函数的加权总和,从而导致一个损失的不平衡状态,与学习每个问题的单独模型相比,一个损失的不平衡状态主导了优化和差的结果。为此,我们提出了通过小容量适配器将多个任务/特定于域网络的知识提炼到单个深神经网络中的知识。我们严格地表明,通用表示在学习NYU-V2和CityScapes中多个密集的预测问题方面实现了最新的表现,来自视觉Decathlon数据集中的不同域中的多个图像分类问题以及MetadataSet中的跨域中的几个域中学习。最后,我们还通过消融和定性研究进行多次分析。
translated by 谷歌翻译
Global pooling is one of the most significant operations in many machine learning models and tasks, which works for information fusion and structured data (like sets and graphs) representation. However, without solid mathematical fundamentals, its practical implementations often depend on empirical mechanisms and thus lead to sub-optimal, even unsatisfactory performance. In this work, we develop a novel and generalized global pooling framework through the lens of optimal transport. The proposed framework is interpretable from the perspective of expectation-maximization. Essentially, it aims at learning an optimal transport across sample indices and feature dimensions, making the corresponding pooling operation maximize the conditional expectation of input data. We demonstrate that most existing pooling methods are equivalent to solving a regularized optimal transport (ROT) problem with different specializations, and more sophisticated pooling operations can be implemented by hierarchically solving multiple ROT problems. Making the parameters of the ROT problem learnable, we develop a family of regularized optimal transport pooling (ROTP) layers. We implement the ROTP layers as a new kind of deep implicit layer. Their model architectures correspond to different optimization algorithms. We test our ROTP layers in several representative set-level machine learning scenarios, including multi-instance learning (MIL), graph classification, graph set representation, and image classification. Experimental results show that applying our ROTP layers can reduce the difficulty of the design and selection of global pooling -- our ROTP layers may either imitate some existing global pooling methods or lead to some new pooling layers fitting data better. The code is available at \url{https://github.com/SDS-Lab/ROT-Pooling}.
translated by 谷歌翻译
准确且强大的视觉对象跟踪是最具挑战性和最基本的计算机视觉问题之一。它需要在图像序列中估计目标的轨迹,仅给出其初始位置和分段,或者在边界框的形式中粗略近似。判别相关滤波器(DCF)和深度暹罗网络(SNS)被出现为主导跟踪范式,这导致了重大进展。在过去十年的视觉对象跟踪快速演变之后,该调查介绍了90多个DCFS和暹罗跟踪器的系统和彻底审查,基于九个跟踪基准。首先,我们介绍了DCF和暹罗跟踪核心配方的背景理论。然后,我们在这些跟踪范式中区分和全面地审查共享以及具体的开放研究挑战。此外,我们彻底分析了DCF和暹罗跟踪器对九个基准的性能,涵盖了视觉跟踪的不同实验方面:数据集,评估度量,性能和速度比较。通过提出根据我们的分析提出尊重开放挑战的建议和建议来完成调查。
translated by 谷歌翻译
使用胶囊网络的原始点云处理在分类,重建和分割中被广泛采用,因为它能够保留输入数据的空间协议。然而,基于现有的大多数基于胶囊的网络方法是计算繁重的,并且在将整个点云作为单个胶囊代表整个点云。我们通过提出具有参数共享的小说卷积胶囊架构,通过提出Pointcaps来解决现有的胶囊网络基础方法的这些限制。除了点击措施之外,我们提出了一种新颖的欧几里德距离路由算法和独立于独立的潜在潜在表示。潜在的表示捕获了点云的物理解释的几何参数,具有动态欧几里德路由,Pointcaps阱 - 代表点的空间(点对部分)关系。 Pointcaps的参数具有显着较低的参数,并且需要显着较低的拖鞋,同时实现与最先进的胶囊网络相比,对原始点云的可比分类和分割精度实现更好的重建。
translated by 谷歌翻译
In this work, we connect two distinct concepts for unsupervised domain adaptation: feature distribution alignment between domains by utilizing the task-specific decision boundary [58] and the Wasserstein metric [73]. Our proposed sliced Wasserstein discrepancy (SWD) is designed to capture the natural notion of dissimilarity between the outputs of task-specific classifiers. It provides a geometrically meaningful guidance to detect target samples that are far from the support of the source and enables efficient distribution alignment in an end-to-end trainable fashion. In the experiments, we validate the effectiveness and genericness of our method on digit and sign recognition, image classification, semantic segmentation, and object detection.
translated by 谷歌翻译