在本文中,我们提出了一条基于截短的签名距离函数(TSDF)体积的接触点检测的新型抓紧管道,以实现闭环7度自由度(7-DOF)在杂物环境上抓住。我们方法的关键方面是1)提议的管道以多视图融合,接触点采样和评估以及碰撞检查,可提供可靠且无碰撞的7-DOF抓手姿势,并带有真实的碰撞 - 时间性能;2)基于接触的姿势表示有效地消除了基于正常方法的歧义,从而提供了更精确和灵活的解决方案。广泛的模拟和实体机器人实验表明,在模拟和物理场景中,就掌握成功率而言,提出的管道可以选择更多的反物和稳定的抓握姿势,并优于基于正常的基线。
translated by 谷歌翻译
As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
掌握姿势估计是机器人与现实世界互动的重要问题。但是,大多数现有方法需要事先可用的精确3D对象模型或大量的培训注释。为了避免这些问题,我们提出了transrasp,一种类别级别的rasp姿势估计方法,该方法通过仅标记一个对象实例来预测一类对象的掌握姿势。具体而言,我们根据其形状对应关系进行掌握姿势转移,并提出一个掌握姿势细化模块,以进一步微调抓地力姿势,以确保成功的掌握。实验证明了我们方法对通过转移的抓握姿势实现高质量抓地力的有效性。我们的代码可在https://github.com/yanjh97/transgrasp上找到。
translated by 谷歌翻译
6多机器人抓钩是一个持久但未解决的问题。最近的方法利用强3D网络从深度传感器中提取几何抓握表示形式,表明对公共物体的准确性卓越,但对光度化挑战性物体(例如,透明或反射材料中的物体)进行不满意。瓶颈在于这些物体的表面由于光吸收或折射而无法反射准确的深度。在本文中,与利用不准确的深度数据相反,我们提出了第一个称为MonograspNet的只有RGB的6-DOF握把管道,该管道使用稳定的2D特征同时处理任意对象抓握,并克服由光学上具有挑战性挑战的对象引起的问题。 MonograspNet利用关键点热图和正常地图来恢复由我们的新型表示形式表示的6-DOF抓握姿势,该表示的2D键盘具有相应的深度,握把方向,抓握宽度和角度。在真实场景中进行的广泛实验表明,我们的方法可以通过在抓住光学方面挑战的对象方面抓住大量对象并超过基于深度的竞争者的竞争成果。为了进一步刺激机器人的操纵研究,我们还注释并开源一个多视图和多场景现实世界抓地数据集,其中包含120个具有20m精确握把标签的混合光度复杂性对象。
translated by 谷歌翻译
Recent 3D-based manipulation methods either directly predict the grasp pose using 3D neural networks, or solve the grasp pose using similar objects retrieved from shape databases. However, the former faces generalizability challenges when testing with new robot arms or unseen objects; and the latter assumes that similar objects exist in the databases. We hypothesize that recent 3D modeling methods provides a path towards building digital replica of the evaluation scene that affords physical simulation and supports robust manipulation algorithm learning. We propose to reconstruct high-quality meshes from real-world point clouds using state-of-the-art neural surface reconstruction method (the Real2Sim step). Because most simulators take meshes for fast simulation, the reconstructed meshes enable grasp pose labels generation without human efforts. The generated labels can train grasp network that performs robustly in the real evaluation scene (the Sim2Real step). In synthetic and real experiments, we show that the Real2Sim2Real pipeline performs better than baseline grasp networks trained with a large dataset and a grasp sampling method with retrieval-based reconstruction. The benefit of the Real2Sim2Real pipeline comes from 1) decoupling scene modeling and grasp sampling into sub-problems, and 2) both sub-problems can be solved with sufficiently high quality using recent 3D learning algorithms and mesh-based physical simulation techniques.
translated by 谷歌翻译
在本文中,我们介绍了DA $^2 $,这是第一个大型双臂灵敏性吸引数据集,用于生成最佳的双人握把对,用于任意大型对象。该数据集包含大约900万的平行jaw grasps,由6000多个对象生成,每个对象都有各种抓紧敏度度量。此外,我们提出了一个端到端的双臂掌握评估模型,该模型在该数据集的渲染场景上训练。我们利用评估模型作为基准,通过在线分析和真实的机器人实验来显示这一新颖和非平凡数据集的价值。所有数据和相关的代码将在https://sites.google.com/view/da2dataset上开源。
translated by 谷歌翻译
我们提出了GRASP提案网络(GP-NET),这是一种卷积神经网络模型,可以为移动操纵器生成6-DOF GRASP。为了训练GP-NET,我们合成生成一个包含深度图像和地面真相掌握信息的数据集,以供超过1400个对象。在现实世界实验中,我们使用egad!掌握基准测试,以评估两种常用算法的GP-NET,即体积抓地力网络(VGN)和在PAL TIAGO移动操纵器上进行的GRASP抓取网络(VGN)和GRASP姿势检测包(GPD)。GP-NET的掌握率为82.2%,而VGN为57.8%,GPD的成功率为63.3%。与机器人握把中最新的方法相反,GP-NET可以在不限制工作空间的情况下使用移动操纵器抓住对象,用于抓住对象,需要桌子进行分割或需要高端GPU。为了鼓励使用GP-NET,我们在https://aucoroboticsmu.github.io/gp-net/上提供ROS包以及我们的代码和预培训模型。
translated by 谷歌翻译
成功掌握对象的能力在机器人中是至关重要的,因为它可以实现多个交互式下游应用程序。为此,大多数方法要么计算兴趣对象的完整6D姿势,要么学习预测一组掌握点。虽然前一种方法对多个对象实例或类没有很好地扩展,但后者需要大的注释数据集,并且受到新几何形状的普遍性能力差的阻碍。为了克服这些缺点,我们建议教授一个机器人如何用简单而简短的人类示范掌握一个物体。因此,我们的方法既不需要许多注释图像,也不限于特定的几何形状。我们首先介绍了一个小型RGB-D图像,显示人对象交互。然后利用该序列来构建表示所描绘的交互的相关手和对象网格。随后,我们完成重建对象形状的缺失部分,并估计了场景中的重建和可见对象之间的相对变换。最后,我们从物体和人手之间的相对姿势转移a-prioriz知识,随着当前对象在场景中的估计到机器人的必要抓握指令。与丰田的人类支持机器人(HSR)在真实和合成环境中的详尽评估证明了我们所提出的方法的适用性及其优势与以前的方法相比。
translated by 谷歌翻译
Being able to grasp objects is a fundamental component of most robotic manipulation systems. In this paper, we present a new approach to simultaneously reconstruct a mesh and a dense grasp quality map of an object from a depth image. At the core of our approach is a novel camera-centric object representation called the "object shell" which is composed of an observed "entry image" and a predicted "exit image". We present an image-to-image residual ConvNet architecture in which the object shell and a grasp-quality map are predicted as separate output channels. The main advantage of the shell representation and the corresponding neural network architecture, ShellGrasp-Net, is that the input-output pixel correspondences in the shell representation are explicitly represented in the architecture. We show that this coupling yields superior generalization capabilities for object reconstruction and accurate grasp quality estimation implicitly considering the object geometry. Our approach yields an efficient dense grasp quality map and an object geometry estimate in a single forward pass. Both of these outputs can be used in a wide range of robotic manipulation applications. With rigorous experimental validation, both in simulation and on a real setup, we show that our shell-based method can be used to generate precise grasps and the associated grasp quality with over 90% accuracy. Diverse grasps computed on shell reconstructions allow the robot to select and execute grasps in cluttered scenes with more than 93% success rate.
translated by 谷歌翻译
Generating grasp poses is a crucial component for any robot object manipulation task. In this work, we formulate the problem of grasp generation as sampling a set of grasps using a variational autoencoder and assess and refine the sampled grasps using a grasp evaluator model. Both Grasp Sampler and Grasp Refinement networks take 3D point clouds observed by a depth camera as input. We evaluate our approach in simulation and real-world robot experiments. Our approach achieves 88% success rate on various commonly used objects with diverse appearances, scales, and weights. Our model is trained purely in simulation and works in the real world without any extra steps. The video of our experiments can be found here.
translated by 谷歌翻译
6-DOF GRASP姿势检测多盖和多对象是智能机器人领域的挑战任务。为了模仿人类的推理能力来抓住对象,广泛研究了数据驱动的方法。随着大规模数据集的引入,我们发现单个物理度量通常会产生几个离散水平的掌握置信分数,这无法很好地区分数百万的掌握姿势并导致不准确的预测结果。在本文中,我们提出了一个混合物理指标来解决此评估不足。首先,我们定义一个新的度量标准是基于力闭合度量的,并通过对象平坦,重力和碰撞的测量来补充。其次,我们利用这种混合物理指标来产生精致的置信度评分。第三,为了有效地学习新的置信度得分,我们设计了一个称为平面重力碰撞抓氏(FGC-Graspnet)的多分辨率网络。 FGC-GRASPNET提出了多个任务的多分辨率特征学习体系结构,并引入了新的关节损失函数,从而增强了GRASP检测的平均精度。网络评估和足够的实际机器人实验证明了我们混合物理指标和FGC-GraspNet的有效性。我们的方法在现实世界中混乱的场景中达到了90.5 \%的成功率。我们的代码可在https://github.com/luyh20/fgc-graspnet上找到。
translated by 谷歌翻译
我们引入了来自多个机器人手的对象的神经隐式表示。多个机器人手之间的不同抓地力被编码为共享的潜在空间。学会了每个潜在矢量以两个3D形状的签名距离函数来解码对象的3D形状和机器人手的3D形状。此外,学会了潜在空间中的距离度量,以保留不同机器人手之间的graSps之间的相似性,其中根据机器人手的接触区域定义了grasps的相似性。该属性使我们能够在包括人手在内的不同抓地力之间转移抓地力,并且GRASP转移有可能在机器人之间分享抓地力,并使机器人能够从人类那里学习掌握技能。此外,我们隐式表示中对象和grasps的编码符号距离函数可用于6D对象姿势估计,并从部分点云中掌握触点优化,这可以在现实世界中启用机器人抓握。
translated by 谷歌翻译
从点云输入中的6-DOF GRASP学习中取得了巨大的成功,但是由于点集无秩序而引起的计算成本仍然是一个令人关注的问题。另外,我们从本文中的RGB-D输入中探讨了GRASP的生成。提出的解决方案Kepoint-GraspNet检测图像空间中Gripper Kepoint的投影,然后用PNP算法恢复SE(3)姿势。建立了基于原始形状和抓住家族的合成数据集来检查我们的想法。基于公制的评估表明,我们的方法在掌握建议的准确性,多样性和时间成本方面优于基准。最后,机器人实验显示出很高的成功率,证明了在现实世界应用中的想法的潜力。
translated by 谷歌翻译
Reliably planning fingertip grasps for multi-fingered hands lies as a key challenge for many tasks including tool use, insertion, and dexterous in-hand manipulation. This task becomes even more difficult when the robot lacks an accurate model of the object to be grasped. Tactile sensing offers a promising approach to account for uncertainties in object shape. However, current robotic hands tend to lack full tactile coverage. As such, a problem arises of how to plan and execute grasps for multi-fingered hands such that contact is made with the area covered by the tactile sensors. To address this issue, we propose an approach to grasp planning that explicitly reasons about where the fingertips should contact the estimated object surface while maximizing the probability of grasp success. Key to our method's success is the use of visual surface estimation for initial planning to encode the contact constraint. The robot then executes this plan using a tactile-feedback controller that enables the robot to adapt to online estimates of the object's surface to correct for errors in the initial plan. Importantly, the robot never explicitly integrates object pose or surface estimates between visual and tactile sensing, instead it uses the two modalities in complementary ways. Vision guides the robots motion prior to contact; touch updates the plan when contact occurs differently than predicted from vision. We show that our method successfully synthesises and executes precision grasps for previously unseen objects using surface estimates from a single camera view. Further, our approach outperforms a state of the art multi-fingered grasp planner, while also beating several baselines we propose.
translated by 谷歌翻译
尽管在机器人抓住方面取得了令人印象深刻的进展,但机器人在复杂的任务中不熟练(例如,在杂乱中搜索并掌握指定的目标)。这些任务不仅涉及抓住,而是对世界的全面感知(例如,对象关系)。最近,令人鼓舞的结果表明,可以通过学习来理解高级概念。然而,这种算法通常是数据密集型的,并且缺乏数据严重限制了它们的性能。在本文中,我们提出了一个名为Reactad的新数据集,用于学习物体和掌握之间的关系。我们收集对象姿势,分段,掌握和目标驱动的关系掌握任务的关系。我们的数据集以2D图像和3D点云的两种形式收集。此外,由于所有数据都会自动生成,因此可以自由地导入数据生成的新对象。我们还发布了一个真实的验证数据集,以评估模型的SIM-to-Real性能,这些模型正在接受重新研磨的模型。最后,我们进行了一系列的实验,表明,根据关系和掌握检测,培训的模型可以概括到现实场景。我们的数据集和代码可以在:https://github.com/poisonwine/gerad
translated by 谷歌翻译
鉴于问题的复杂性,从各种传感器模式到高度纠缠的对象布局,再到多样化的项目属性和抓地力类型,因此对视觉驱动的机器人系统提出了重大挑战。现有方法通常从一个角度解决问题。各种项目和复杂的垃圾箱场景需要多种选择策略以及高级推理。因此,要构建可靠的机器学习算法来解决这项复杂的任务,需要大量的全面和高质量的数据。在现实世界中收集此类数据将太昂贵,时间过高,因此从可伸缩性角度来看。为了解决这个大型,多样化的数据问题,我们从最近的元素概念上的增长中获得了灵感,并引入了MetagraspNet,这是一种通过基于物理学的元合成构建的大规模的照片现实垃圾箱挑选数据集。所提出的数据集在82种不同的文章类型上包含217K RGBD图像,并具有完整的注释,可用于对象检测,Amodal感知,关键点检测,操纵顺序和平行jaw和真空吸尘器的Ambidextrous Grasp标签。我们还提供了一个真实的数据集,该数据集由超过2.3k全面注释的高质量RGBD图像组成,分为5个困难级别和一个看不见的对象,以评估不同的对象和布局属性。最后,我们进行了广泛的实验,表明我们提出的真空密封模型和合成数据集实现了最先进的性能,并将其推广到现实世界用例。
translated by 谷歌翻译
形状通知如何将对象掌握,无论是如何以及如何。因此,本文介绍了一种基于分割的架构,用于将用深度摄像机进行分解为多个基本形状的对象,以及用于机器人抓握的后处理管道。分段采用深度网络,称为PS-CNN,在具有6个类的原始形状和使用模拟引擎生成的合成数据上培训。每个原始形状都设计有参数化掌握家族,允许管道识别每个形状区域的多个掌握候选者。掌握是排序的排名,选择用于执行的第一个可行的。对于无任务掌握单个对象,该方法达到94.2%的成功率将其放置在顶部执行掌握方法中,与自上而下和SE(3)基础相比。涉及变量观点和杂波的其他测试展示了设置的鲁棒性。对于面向任务的掌握,PS-CNN实现了93.0%的成功率。总体而言,结果支持该假设,即在抓地管道内明确地编码形状原语应该提高掌握性能,包括无任务和任务相关的掌握预测。
translated by 谷歌翻译
如今,机器人在我们的日常生活中起着越来越重要的作用。在以人为本的环境中,机器人经常会遇到成堆的对象,包装的项目或孤立的对象。因此,机器人必须能够在各种情况下掌握和操纵不同的物体,以帮助人类进行日常任务。在本文中,我们提出了一种多视图深度学习方法,以处理以人为中心的域中抓住强大的对象。特别是,我们的方法将任意对象的点云作为输入,然后生成给定对象的拼字图。获得的视图最终用于估计每个对象的像素抓握合成。我们使用小对象抓住数据集训练模型端到端,并在模拟和现实世界数据上对其进行测试,而无需进行任何进一步的微调。为了评估所提出方法的性能,我们在三种情况下进行了广泛的实验集,包括孤立的对象,包装的项目和一堆对象。实验结果表明,我们的方法在所有仿真和现实机器人方案中都表现出色,并且能够在各种场景配置中实现新颖对象的可靠闭环抓握。
translated by 谷歌翻译
对于机器人来说,在混乱的场景中抓住检测是一项非常具有挑战性的任务。生成合成抓地数据是训练和测试抓握方法的流行方式,DEX-NET和GRASPNET也是如此。然而,这些方法在3D合成对象模型上生成了训练掌握,但是在具有不同分布的图像或点云上进行评估,从而降低了由于稀疏的掌握标签和协变量移位而在真实场景上的性能。为了解决现有的问题,我们提出了一种新型的policy抓取检测方法,该方法可以用RGB-D图像生成的密集像素级抓握标签对相同的分布进行训练和测试。提出了一种并行深度的掌握生成(PDG生成)方法,以通过并行的投射点的新成像模型生成平行的深度图像;然后,该方法为每个像素生成多个候选抓地力,并通过平坦检测,力闭合度量和碰撞检测获得可靠的抓地力。然后,构建并释放了大型综合像素级姿势数据集(PLGP数据集)。该数据集使用先前的数据集和稀疏的Grasp样品区分开,是第一个像素级掌握数据集,其上的分布分布基于深度图像生成了grasps。最后,我们建立和测试了一系列像素级的抓地力检测网络,并通过数据增强过程进行不平衡训练,该过程以输入RGB-D图像的方式学习抓握姿势。广泛的实验表明,我们的policy掌握方法可以在很大程度上克服模拟与现实之间的差距,并实现最新的性能。代码和数据可在https://github.com/liuchunsense/plgp-dataset上提供。
translated by 谷歌翻译