The Information Bottleneck theory provides a theoretical and computational framework for finding approximate minimum sufficient statistics. Analysis of the Stochastic Gradient Descent (SGD) training of a neural network on a toy problem has shown the existence of two phases, fitting and compression. In this work, we analyze the SGD training process of a Deep Neural Network on MNIST classification and confirm the existence of two phases of SGD training. We also propose a setup for estimating the mutual information for a Deep Neural Network through Variational Inference.
translated by 谷歌翻译
We present a variational approximation to the information bottleneck of Tishby et al. (1999). This variational approach allows us to parameterize the information bottleneck model using a neural network and leverage the reparameterization trick for efficient training. We call this method "Deep Variational Information Bottleneck", or Deep VIB. We show that models trained with the VIB objective outperform those that are trained with other forms of regularization, in terms of generalization performance and robustness to adversarial attack.
translated by 谷歌翻译
When presented with a data stream of two statistically dependent variables, predicting the future of one of the variables (the target stream) can benefit from information about both its history and the history of the other variable (the source stream). For example, fluctuations in temperature at a weather station can be predicted using both temperatures and barometric readings. However, a challenge when modelling such data is that it is easy for a neural network to rely on the greatest joint correlations within the target stream, which may ignore a crucial but small information transfer from the source to the target stream. As well, there are often situations where the target stream may have previously been modelled independently and it would be useful to use that model to inform a new joint model. Here, we develop an information bottleneck approach for conditional learning on two dependent streams of data. Our method, which we call Transfer Entropy Bottleneck (TEB), allows one to learn a model that bottlenecks the directed information transferred from the source variable to the target variable, while quantifying this information transfer within the model. As such, TEB provides a useful new information bottleneck approach for modelling two statistically dependent streams of data in order to make predictions about one of them.
translated by 谷歌翻译
Deep Neural Networks (DNNs) are analyzed via the theoretical framework of the information bottleneck (IB) principle. We first show that any DNN can be quantified by the mutual information between the layers and the input and output variables. Using this representation we can calculate the optimal information theoretic limits of the DNN and obtain finite sample generalization bounds. The advantage of getting closer to the theoretical limit is quantifiable both by the generalization bound and by the network's simplicity. We argue that both the optimal architecture, number of layers and features/connections at each layer, are related to the bifurcation points of the information bottleneck tradeoff, namely, relevant compression of the input layer with respect to the output layer. The hierarchical representations at the layered network naturally correspond to the structural phase transitions along the information curve. We believe that this new insight can lead to new optimality bounds and deep learning algorithms.
translated by 谷歌翻译
瓶颈问题是一系列重要的优化问题,最近在机器学习和信息理论领域引起了人们的关注。它们被广泛用于生成模型,公平的机器学习算法,对隐私保护机制的设计,并在各种多用户通信问题中作为信息理论性能界限出现。在这项工作中,我们提出了一个普通的优化问题家族,称为复杂性 - 裸露的瓶颈(俱乐部)模型,该模型(i)提供了一个统一的理论框架,该框架将大多数最先进的文献推广到信息理论隐私模型(ii)建立了对流行的生成和判别模型的新解释,(iii)构建了生成压缩模型的新见解,并且(iv)可以在公平的生成模型中使用。我们首先将俱乐部模型作为复杂性约束的隐私性优化问题。然后,我们将其与密切相关的瓶颈问题(即信息瓶颈(IB),隐私渠道(PF),确定性IB(DIB),条件熵瓶颈(CEB)和有条件的PF(CPF)连接。我们表明,俱乐部模型概括了所有这些问题以及大多数其他信息理论隐私模型。然后,我们通过使用神经网络来参数化相关信息数量的变异近似来构建深层俱乐部(DVCLUB)模型。在这些信息数量的基础上,我们提出了监督和无监督的DVClub模型的统一目标。然后,我们在无监督的设置中利用DVClub模型,然后将其与最先进的生成模型(例如变异自动编码器(VAE),生成对抗网络(GAN)以及Wasserstein Gan(WGAN)连接起来,Wasserstein自动编码器(WAE)和对抗性自动编码器(AAE)通过最佳运输(OT)问题模型。然后,我们证明DVCLUB模型也可以用于公平表示学习问题,其目标是在机器学习模型的训练阶段减轻不希望的偏差。我们对彩色命名和Celeba数据集进行了广泛的定量实验,并提供了公共实施,以评估和分析俱乐部模型。
translated by 谷歌翻译
Estimating and optimizing Mutual Information (MI) is core to many problems in machine learning; however, bounding MI in high dimensions is challenging. To establish tractable and scalable objectives, recent work has turned to variational bounds parameterized by neural networks, but the relationships and tradeoffs between these bounds remains unclear. In this work, we unify these recent developments in a single framework. We find that the existing variational lower bounds degrade when the MI is large, exhibiting either high bias or high variance. To address this problem, we introduce a continuum of lower bounds that encompasses previous bounds and flexibly trades off bias and variance. On high-dimensional, controlled problems, we empirically characterize the bias and variance of the bounds and their gradients and demonstrate the effectiveness of our new bounds for estimation and representation learning.
translated by 谷歌翻译
安全部署到现实世界的机器学习模式通常是一个具有挑战性的过程。从特定地理位置获得的数据训练的模型往往会在询问其他地方获得的数据时失败,在仿真中培训的代理可以在部署在现实世界或新颖的环境中进行适应时,以及适合于拟合的神经网络人口可能会将一些选择偏见纳入其决策过程。在这项工作中,我们描述了(i)通过(i)识别和描述了不同误差来源的新信息 - 理论观点的数据转移问题,(ii)比较最近域概括和公平探讨的一些最有前景的目标分类文献。从我们的理论分析和实证评估中,我们得出结论,需要通过关于观察到的数据,用于校正的因素的仔细考虑和数据生成过程的结构来指导模型选择程序。
translated by 谷歌翻译
We argue that the estimation of mutual information between high dimensional continuous random variables can be achieved by gradient descent over neural networks. We present a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent. We present a handful of applications on which MINE can be used to minimize or maximize mutual information. We apply MINE to improve adversarially trained generative models. We also use MINE to implement the Information Bottleneck, applying it to supervised classification; our results demonstrate substantial improvement in flexibility and performance in these settings.
translated by 谷歌翻译
Transferring knowledge from a teacher neural network pretrained on the same or a similar task to a student neural network can significantly improve the performance of the student neural network. Existing knowledge transfer approaches match the activations or the corresponding handcrafted features of the teacher and the student networks. We propose an information-theoretic framework for knowledge transfer which formulates knowledge transfer as maximizing the mutual information between the teacher and the student networks. We compare our method with existing knowledge transfer methods on both knowledge distillation and transfer learning tasks and show that our method consistently outperforms existing methods. We further demonstrate the strength of our method on knowledge transfer across heterogeneous network architectures by transferring knowledge from a convolutional neural network (CNN) to a multi-layer perceptron (MLP) on CIFAR-10. The resulting MLP significantly outperforms the-state-of-the-art methods and it achieves similar performance to the CNN with a single convolutional layer. * Contributed during an internship at Amazon.
translated by 谷歌翻译
深度神经网络是一个很好的任务解决者,但是很难理解其操作。人们对如何形成有关其运作的解释有不同的想法。我们从一个新的角度来看这个问题,在该问题中,通过量化了用于解决以前任务的信息之外,还量化了多少以前未使用的信息来综合任务解决的解释。首先,在学习了几个任务之后,网络将获取与每个任务相关的几个信息分区。然后,我们建议该网络学习最小的信息分区,这些信息分区已补充以前学习的信息分区以更准确地表示输入。此额外的分区与以前任务中未使用的未概念的信息相关联。我们设法确定使用了哪些未概念的信息并量化了金额。为了解释网络如何解决新任务,我们量化了从每个分区中提取多少信息的元信息。我们使用各种信息瓶颈技术实现此框架。我们使用MNIST和CLEVR数据集测试框架。该框架被证明能够以元信息的形式构成信息分区并综合经验依赖性解释。该系统通过将未概念的信息分区的一部分转换为与任务相关的分区,从而逐步改善了对新体验的解释分辨率。它还可以通过对以前未概念的信息来解决新任务所需的以前的未感知信息的一部分来提供视觉解释。
translated by 谷歌翻译
速率 - 失真(R-D)函数,信息理论中的关键数量,其特征在于,通过任何压缩算法,通过任何压缩算法将数据源可以压缩到保真标准的基本限制。随着研究人员推动了不断提高的压缩性能,建立给定数据源的R-D功能不仅具有科学的兴趣,而且还在可能的空间上揭示了改善压缩算法的可能性。以前的解决此问题依赖于数据源上的分布假设(Gibson,2017)或仅应用于离散数据。相比之下,本文使得第一次尝试播放常规(不一定是离散的)源仅需要i.i.d的算法的算法。数据样本。我们估计高斯和高尺寸香蕉形源的R-D三明治界,以及GaN生成的图像。我们在自然图像上的R-D上限表示在各种比特率的PSNR中提高最先进的图像压缩方法的性能的空间。
translated by 谷歌翻译
过度装备数据是与生成模型的众所周知的现象,其模拟太紧密(或准确)的特定数据实例,因此可能无法可靠地预测未来的观察。在实践中,这种行为是由各种 - 有时启发式的 - 正则化技术控制,这是通过将上限发展到泛化误差的激励。在这项工作中,我们研究依赖于在跨熵损失的随机编码上依赖于随机编码的泛化误差,这通常用于深度学习进行分类问题。我们导出界定误差,示出存在根据编码分布随机生成的输入特征和潜在空间中的相应表示之间的相互信息界定的制度。我们的界限提供了对所谓的各种变分类分类中的概括的信息理解,其由Kullback-Leibler(KL)发散项进行规则化。这些结果为变分推理方法提供了高度流行的KL术语的理论理由,这些方法已经认识到作为正则化罚款有效行动。我们进一步观察了具有良好研究概念的连接,例如变形自动化器,信息丢失,信息瓶颈和Boltzmann机器。最后,我们对Mnist和CiFar数据集进行了数值实验,并表明相互信息确实高度代表了泛化误差的行为。
translated by 谷歌翻译
我们提出了一个通过信息瓶颈约束来学习CAPSNET的学习框架的框架,该框架将信息提炼成紧凑的形式,并激励学习可解释的分解化胶囊。在我们的$ \ beta $ -capsnet框架中,使用超参数$ \ beta $用于权衡解开和其他任务,使用变异推理将信息瓶颈术语转换为kl divergence,以近似为约束胶囊。为了进行监督学习,使用类独立掩码矢量来理解合成的变化类型,无论图像类别类别,我们通过调整参数$ \ beta $来进行大量的定量和定性实验,以找出分离,重建和细节之间的关系表现。此外,提出了无监督的$ \ beta $ -capsnet和相应的动态路由算法,以学习范围的方式,以一种无监督的方式学习解散胶囊,广泛的经验评估表明我们的$ \ beta $ -CAPPAPSNET可实现的是先进的分离性截止性性能比较在监督和无监督场景中的几个复杂数据集上的CAPSNET和各种基线。
translated by 谷歌翻译
提出了一种新的双峰生成模型,用于生成条件样品和关节样品,并采用学习简洁的瓶颈表示的训练方法。所提出的模型被称为变异Wyner模型,是基于网络信息理论中的两个经典问题(分布式仿真和信道综合)设计的,其中Wyner的共同信息是对公共表示简洁性的基本限制。该模型是通过最大程度地减少对称的kullback的训练 - 差异 - 变异分布和模型分布之间具有正则化项,用于常见信息,重建一致性和潜在空间匹配项,该术语是通过对逆密度比率估计技术进行的。通过与合成和现实世界数据集的联合和有条件生成的实验以及具有挑战性的零照片图像检索任务,证明了所提出的方法的实用性。
translated by 谷歌翻译
最近,已经提出了几种方法,用于使用深神经网络估计来自样本数据的互信息,并且没有知道数据的特写形式分布。这类估算器被称为神经互动信息估计。虽然非常有希望,但是这种技术尚未严格地标记,以便建立它们的功效,易于实现和能力估计的稳定性,这是关节最大化帧工作。在本文中,我们比较文献中提出的不同技术,以估算能力,并提供从业者的效力。特别是,我们研究了相互信息神经估算器(MINE),平滑的互信息下限估计器(微笑)的性能,以及指导信息神经估算器(DINE),并提供对INCONCE的见解。我们在他们学习作为AWGN通道的容量接近的容量接近的输入分布的能力方面评估了这些算法,光学强度信道和峰值功率受限AWGN通道。对于这两种情况,我们对培训过程的各个方面提供了富有洞察力的评论,例如稳定性,初始化的敏感性。
translated by 谷歌翻译
具有潜在变量的深生成模型已被最近用于从多模式数据中学习关节表示和生成过程。但是,这两种学习机制可能相互冲突,表示形式无法嵌入有关数据模式的信息。本研究研究了所有模式和类标签可用于模型培训的现实情况,但是缺少下游任务所需的一些方式和标签。在这种情况下,我们表明,变异下限限制了联合表示和缺失模式之间的相互信息。为了抵消这些问题,我们引入了一种新型的条件多模式判别模型,该模型使用信息性的先验分布并优化了无可能的无可能目标函数,该目标函数可在联合表示和缺失模态之间最大化相互信息。广泛的实验表明了我们提出的模型的好处,这是经验结果表明,我们的模型实现了最新的结果,从而导致了代表性问题,例如下游分类,声音反演和注释产生。
translated by 谷歌翻译
深度神经网络无法推广到分布数据是一个众所周知的问题,并引起了人们对在安全关键领域(例如医疗保健,金融和自动驾驶汽车)部署训练的网络的担忧。我们研究了一种特定的分销偏移$ \ unicode {x2013} $快捷方式或培训数据中的虚假相关性。快捷方式学习通常仅在对不包含相同伪造相关性的现实世界数据进行评估时才能暴露出来,这使AI从业人员适当评估训练有素的现实世界应用模型的有效性构成了严重的困境。在这项工作中,我们建议在学习的表示和输入之间使用共同信息(MI)作为指标,以查找培训中的位置,网络锁定在快捷方式上。实验表明,MI可以用作监测快捷方式学习的域敏捷度量。
translated by 谷歌翻译
共同信息(MI)已被广泛用作训练神经网络的损失正规化程序。当学习高维数据的分解或压缩表示时,这特别有效。但是,差异熵(DE)是信息的另一种基本衡量标准,在神经网络培训中尚未发现广泛使用。尽管DE提供了比MI的可能更广泛的应用程序,但现成的DE估计器要么是非可区分的,在计算上是棘手的,要么无法适应基础分布的变化。这些缺点使它们无法在神经网络培训中用作正规化器。为了解决DE先前提出的估计器中的缺点,我们在这里介绍了刀具,这是一个完全参数化的,基于DE的基于核的估计器。我们方法的灵活性还使我们能够为条件(离散变量或连续变量)以及MI构建基于刀的估计器。我们从经验上验证了高维合成数据的方法,并进一步应用它来指导神经网络的现实任务培训。我们对各种任务的实验,包括视觉域的适应性,文本公平分类和文本微调,证明了基于刀的估计的有效性。代码可以在https://github.com/g-pichler/knife上找到。
translated by 谷歌翻译
In this preliminary work, we study the generalization properties of infinite ensembles of infinitely-wide neural networks. Amazingly, this model family admits tractable calculations for many information-theoretic quantities. We report analytical and empirical investigations in the search for signals that correlate with generalization.
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译