建模语义信息对于场景文本识别有用。在这项工作中,我们建议与视觉语义变压器(VST)共同模拟语义和视觉信息。 VST首先从具有变压器模块和主视觉语义对齐模块中的视觉特征映射明确地提取主语义信息。然后将语义信息与视觉特征映射(被视为序列)连接以形成伪多域序列,该伪多域序列组合视觉和语义信息,随后将其馈入基于变压器的交互模块,以便能够在视觉和视觉之间学习相互作用语义特征。以这种方式,可以通过语义信息和反之亦然可以增强视觉特征。可视特征的增强版本通过辅助视觉 - 语义对准模块进一步解码,其与主要一个共享权重。最后,通过获得最终文本预测的第三变压器模块共同处理解码的视觉特征和增强的语义特征。在包括常规/不规则文本识别数据集的七个公共基准测试中的实验验证了我们所提出的模型,在七个基准中的四个基准中达到最先进的效果。
translated by 谷歌翻译
场景文本检测仍然是一个具有挑战性的任务,因为可能存在极小的小或低分辨率的笔划,并且关闭或任意形状的文本。在本文中,提出了通过捕获细粒度的笔划来有效地检测文本,并在图中的分层表示之间推断结构关系。不同于由一系列点或矩形框表示文本区域的现有方法,我们通过笔划辅助预测网络(SAPN)直接本地化每个文本实例的笔划。此外,采用分层关系图网络(HRGN)来执行关系推理和预测链接的可能性,有效地将关闭文本实例和分组节点分类结果分割成任意形状的文本区域。我们介绍了一个小型数据集,其中具有笔划级注释,即SyntheTroke,用于我们模型的脱机预培训。宽范围基准测试的实验验证了我们方法的最先进的性能。我们的数据集和代码将可用。
translated by 谷歌翻译
深度学习技术导致了通用对象检测领域的显着突破,近年来产生了很多场景理解的任务。由于其强大的语义表示和应用于场景理解,场景图一直是研究的焦点。场景图生成(SGG)是指自动将图像映射到语义结构场景图中的任务,这需要正确标记检测到的对象及其关系。虽然这是一项具有挑战性的任务,但社区已经提出了许多SGG方法并取得了良好的效果。在本文中,我们对深度学习技术带来了近期成就的全面调查。我们审查了138个代表作品,涵盖了不同的输入方式,并系统地将现有的基于图像的SGG方法从特征提取和融合的角度进行了综述。我们试图通过全面的方式对现有的视觉关系检测方法进行连接和系统化现有的视觉关系检测方法,概述和解释SGG的机制和策略。最后,我们通过深入讨论当前存在的问题和未来的研究方向来完成这项调查。本调查将帮助读者更好地了解当前的研究状况和想法。
translated by 谷歌翻译
通过提供语义来改进字符序列,语言知识对现场文本识别带来了很大的好处。然而,由于语言知识已经单独应用于输出序列,因此之前的方法没有充分利用语义来理解文本识别的视觉线索。本文介绍了一种名为多模态文本识别网络(MITRN)的新方法,其能够实现视觉和语义特征之间的相互作用以获得更好的识别性能。具体地,Matrn识别视觉和语义特征对并将空间信息进行编码为语义特征。基于空间编码,通过参考其他模态的相关特征提高了视觉和语义特征。此外,通过隐藏与训练阶段中的角色相关的视觉线程来刺激基质特征将语义特征组合成视觉特征。我们的实验表明,在具有大边缘的七个基准上实现了最先进的表演,而两个方式的天真组合显示了边缘改善。进一步消融研究证明了我们所提出的组件的有效性。我们的实施将公开提供。
translated by 谷歌翻译
根据图像回答语义复杂的问题是在视觉问题应答(VQA)任务中的具有挑战性。虽然图像可以通过深度学习来良好代表,但是始终简单地嵌入问题,并且不能很好地表明它的含义。此外,视觉和文本特征具有不同模式的间隙,很难对齐和利用跨模块信息。在本文中,我们专注于这两个问题,并提出了一种匹配关注(GMA)网络的图表。首先,它不仅为图像构建图形,而且在句法和嵌入信息方面构建了该问题的图表。接下来,我们通过双级图形编码器探讨了模特内的关系,然后呈现双边跨模型图匹配注意力以推断图像与问题之间的关系。然后将更新的跨模式特征发送到答案预测模块中以进行最终答案预测。实验表明,我们的网络在GQA数据集和VQA 2.0数据集上达到了最先进的性能。消融研究验证了GMA网络中每个模块的有效性。
translated by 谷歌翻译
在现场文本识别中已经证明了语义信息。大多数现有方法倾向于将视觉和语义信息耦合到基于关注的解码器中。结果,语义特征的学习易于在训练集的有限词汇上具有偏差,这被称为词汇关系。在本文中,我们提出了一种新颖的视觉语义解耦网络(VSDN)来解决问题。我们的VSDN包含一个可视解码器(VD)和语义解码器(SD),以分别学习更纯度的视觉和语义特征表示。此外,语义编码器(SE)设计用于匹配SD,可以通过简单的单词校正任务通过额外的廉价大型词汇进行预先培训。因此,语义特征更加不偏并且精确地引导视觉特征对准并丰富最终字符表示。实验表明,我们的方法在标准基准上实现了最先进的或竞争力的结果,并且在培训集具有小尺寸的词汇量的情况下,在较大的余量下优于流行的基线。
translated by 谷歌翻译
3D场景理解是一个相对新兴的研究领域。在本文中,我们介绍了3D现实世界场景(VQA-3D)中的视觉问题应答任务,旨在给出3D场景的所有可能的问题。为了解决这个问题,提出了第一个VQA-3D数据集,即CLEVR3D,其中包含在1,129个现实世界场景中的60k个问题。具体而言,我们开发一个问题发动机利用3D场景图结构来生成不同的推理问题,涵盖物体属性的问题(即,大小,颜色和材料)及其空间关系。建立在此数据集之上,我们进一步设计了第一个VQA-3D基线模型TransVQA3D。 TransVQA3D型号采用精心设计的变压器架构,实现优越的VQA-3D性能,与纯语言基线和先前的3D推理方法直接应用于3D场景。实验结果验证了VQA-3D作为辅助任务可以提高3D场景理解的性能,包括节点明智分类和全图识别的场景图分析。
translated by 谷歌翻译
视频问题应答(VideoQA),旨在基于了解多模态视频内容正确回答给定的问题,由于视频内容丰富,这是具有挑战性的。从视频理解的角度来看,良好的视频仪框架需要了解不同语义级别的视频内容,并灵活地将不同的视频内容集成到蒸馏问题相关内容。为此,我们提出了一个名为Livlr的轻量级视觉语言推理框架。具体地,Livlr首先利用基于图形的视觉和语言编码器来获得多粒度的视觉和语言表示。随后,所获得的表示与设计的分集感知视觉语言推理模块(DAVL)集成。 DAVL考虑不同类型的表示之间的差异,并且在生成问题相关的联合表示时可以灵活地调整不同类型表示的重要性,这是一种有效和一般的表示集成方法。拟议的LIVLR轻量级,并在两个VideoQ基准,MRSVTT-QA和了解VQA上显示了其性能优势。广泛的消融研究证明了LIVLR关键部件的有效性。
translated by 谷歌翻译
视觉问题应答(VQA)任务利用视觉图像和语言分析来回回答图像的文本问题。它是一个流行的研究课题,在过去十年中越来越多的现实应用。本文介绍了我们最近对AliceMind-MMU的研究(阿里巴巴的编码器 - 解码器来自Damo Academy - 多媒体理解的机器智能实验室),其比人类在VQA上获得相似甚至略微更好的结果。这是通过系统地改善VQA流水线来实现的,包括:(1)具有全面的视觉和文本特征表示的预培训; (2)与学习参加的有效跨模型互动; (3)一个新颖的知识挖掘框架,具有专门的专业专家模块,适用于复杂的VQA任务。处理不同类型的视觉问题,需要具有相应的专业知识在提高我们的VQA架构的表现方面发挥着重要作用,这取决于人力水平。进行了广泛的实验和分析,以证明新的研究工作的有效性。
translated by 谷歌翻译
现有的kg增强模型用于问题回答主要专注于设计精心图形神经网络(GNN)以模拟知识图(KG)。但是,它们忽略了(i)有效地融合和推理过问题上下文表示和kg表示,并且(ii)在推理期间自动从嘈杂的KG中选择相关节点。在本文中,我们提出了一种新颖的型号,其通过LMS和GNN的联合推理和动态KGS修剪机制解决了上述限制。具体而言,ConntLK通过新的密集双向注意模块在LMS和GNN之间执行联合推理,其中每个问题令牌参加KG节点,每个KG节点都会参加问题令牌,并且两个模态表示熔断和通过多次熔断和更新。步互动。然后,动态修剪模块使用通过联合推理产生的注意重量来递归修剪无关的kg节点。我们在CommanSENSEQA和OpenBookQA数据集上的结果表明,我们的模态融合和知识修剪方法可以更好地利用相关知识来推理。
translated by 谷歌翻译
在计算机视觉中长期以来一直研究了时间行动定位。现有的最先进的动作定位方法将每个视频划分为多个动作单位(即,在一级方法中的两级方法和段中的提案),然后单独地对每个视频进行操作,而不明确利用他们在学习期间的关系。在本文中,我们声称,动作单位之间的关系在行动定位中发挥着重要作用,并且更强大的动作探测器不仅应捕获每个动作单元的本地内容,还应允许更广泛的视野与相关的上下文它。为此,我们提出了一般图表卷积模块(GCM),可以轻松插入现有的动作本地化方法,包括两阶段和单级范式。具体而言,我们首先构造一个图形,其中每个动作单元被表示为节点,并且两个动作单元之间作为边缘之间的关系。在这里,我们使用两种类型的关系,一个类型的关系,用于捕获不同动作单位之间的时间连接,另一类是用于表征其语义关系的另一个关系。特别是对于两级方法中的时间连接,我们进一步探索了两种不同的边缘,一个连接重叠动作单元和连接周围但脱节的单元的另一个。在我们构建的图表上,我们将图形卷积网络(GCNS)应用于模拟不同动作单位之间的关系,这能够了解更有信息的表示来增强动作本地化。实验结果表明,我们的GCM始终如一地提高了现有行动定位方法的性能,包括两阶段方法(例如,CBR和R-C3D)和一级方法(例如,D-SSAD),验证我们的一般性和有效性GCM。
translated by 谷歌翻译
人类自然有效地在复杂的场景中找到突出区域。通过这种观察的动机,引入了计算机视觉中的注意力机制,目的是模仿人类视觉系统的这一方面。这种注意机制可以基于输入图像的特征被视为动态权重调整过程。注意机制在许多视觉任务中取得了巨大的成功,包括图像分类,对象检测,语义分割,视频理解,图像生成,3D视觉,多模态任务和自我监督的学习。在本调查中,我们对计算机愿景中的各种关注机制进行了全面的审查,并根据渠道注意,空间关注,暂时关注和分支注意力进行分类。相关的存储库https://github.com/menghaoguo/awesome-vision-tions致力于收集相关的工作。我们还建议了未来的注意机制研究方向。
translated by 谷歌翻译
基于关注的编码器解码器框架广泛用于场景文本识别任务。然而,对于当前的最先进的(SOTA)方法,就输入文本图像的本地视觉和全局上下文信息的有效使用而言,存在改进的余地,以及场景之间的鲁棒相关性处理模块(编码器)和文本处理模块(解码器)。在本文中,我们提出了一种表示和相关性增强的编码器解码器框架(Rceed)来解决这些缺陷和断裂性能瓶颈。在编码器模块中,将本地视觉功能,全局上下文特征和位置信息进行对齐并融合以生成小型综合特征图。在解码器模块中,使用两种方法来增强场景和文本特征空间之间的相关性。 1)解码器初始化由从编码器导出的整体特征和全局瞥觉矢量引导。 2)通过多头一般注意力产生的富集瞥见载体的特征来帮助RNN迭代和每个时间步骤的字符预测。同时,我们还设计了一个LABRAMORM-DROPOUT LSTM单元,以改善模型的可变文本的概括。基准的广泛实验展示了在现场文本识别任务中的有利性能,尤其是不规则的性能。
translated by 谷歌翻译
最近,在深图模型的帮助下,表结构识别取得了令人印象深刻的进展。其中大多数利用表格元素的单个视觉线索或通过早期融合来利用其他方式与其他方式结合起来,以推理其图形关系。然而,在多种模式方面既不是早期融合也不是单独的推理,可以适用于具有巨大多样性的表结构。相反,预计不同的方式将以不同的表案例的不同模式相互协作。在社区中,表层结构推理的跨性模特间交互的重要性仍未开发。在本文中,我们将其定义为异构表结构识别(异质-TSR)问题。旨在填补这种差距,我们提出了一种配备有堆叠的协作块的新型神经协作图机(NCGM),其替代地提取了模态上下文并以分层方式模拟了模范间交互。它可以代表表格元件的帧内模特关系更加强大,这显着提高了识别性能。我们还表明,所提出的NCGM可以调制在模态线索的背景下调节不同方式的不同方式的协同模式,这对于多元化表案例至关重要。基准测试的实验结果证明了我们所提出的NCGM实现最先进的性能,并通过较大的余量击败其他当代方法,特别是在挑战性的情况下。
translated by 谷歌翻译
场景图是一个场景的结构化表示,可以清楚地表达场景中对象之间的对象,属性和关系。随着计算机视觉技术继续发展,只需检测和识别图像中的对象,人们不再满足。相反,人们期待着对视觉场景更高的理解和推理。例如,给定图像,我们希望不仅检测和识别图像中的对象,还要知道对象之间的关系(视觉关系检测),并基于图像内容生成文本描述(图像标题)。或者,我们可能希望机器告诉我们图像中的小女孩正在做什么(视觉问题应答(VQA)),甚至从图像中移除狗并找到类似的图像(图像编辑和检索)等。这些任务需要更高水平的图像视觉任务的理解和推理。场景图只是场景理解的强大工具。因此,场景图引起了大量研究人员的注意力,相关的研究往往是跨模型,复杂,快速发展的。然而,目前没有对场景图的相对系统的调查。为此,本调查对现行场景图研究进行了全面调查。更具体地说,我们首先总结了场景图的一般定义,随后对场景图(SGG)和SGG的发电方法进行了全面和系统的讨论,借助于先验知识。然后,我们调查了场景图的主要应用,并汇总了最常用的数据集。最后,我们对场景图的未来发展提供了一些见解。我们相信这将是未来研究场景图的一个非常有帮助的基础。
translated by 谷歌翻译
大多数息肉分段方法使用CNNS作为其骨干,导致在编码器和解码器之间的信息交换信息时的两个关键问题:1)考虑到不同级别特征之间的贡献的差异; 2)设计有效机制,以融合这些功能。不同于现有的基于CNN的方法,我们采用了一个变压器编码器,它学会了更强大和强大的表示。此外,考虑到息肉的图像采集影响和难以实现的性质,我们介绍了三种新模块,包括级联融合模块(CFM),伪装识别模块(CIM),A和相似性聚集模块(SAM)。其中,CFM用于从高级功能收集息肉的语义和位置信息,而CIM应用于在低级功能中伪装的息肉信息。在SAM的帮助下,我们将息肉区域的像素特征扩展到整个息肉区域的高电平语义位置信息,从而有效地融合了交叉级别特征。所提出的模型名为Polyp-PVT,有效地抑制了特征中的噪声,并显着提高了他们的表现力。在五个广泛采用的数据集上进行了广泛的实验表明,所提出的模型对各种具有挑战性的情况(例如,外观变化,小物体)比现有方法更加强大,并实现了新的最先进的性能。拟议的模型可在https://github.com/dengpingfan/polyp-pvt获得。
translated by 谷歌翻译
在本文中,我们提出了端到端的结构化多峰关注(SMA)神经网络,主要解决了上述前两个问题。 SMA首先使用结构图表示来编码图像中出现的对象对象,对象文本和文本文本关系,然后设计多模式图注意网络以推理它。最后,由上述模块的输出由全局本地注意力应答模块处理,以通过跟随M4C迭代地生成从两个OCR和常规词汇拼接的答案。我们所提出的模型优于TextVQA数据集上的SOTA模型以及除基于预先训练的水龙头之外的所有模型中的所有模型中的ST-VQA数据集的两个任务。展示了强大的推理能力,它还在TextVQA挑战中获得了第一名的第一名。我们在几种推理模型中广泛测试了不同的OCR方法,并调查了逐步提高了OCR性能对TextVQA基准的影响。通过更好的OCR结果,不同的型号对VQA准确性的戏剧性提高,但我们的模型受益最强烈的文本视觉推理能力。要授予我们的方法,并为进一步作品提供公平的测试基础,我们还为TextVQA数据集提供人为的地面实际OCR注释,这些ocr注释未在原始版本中提供。 TextVQA数据集的代码和地面ocr注释在https://github.com/chenyugao-cs/sma提供
translated by 谷歌翻译
估计来自图像的3D人形和姿势的能力在许多环境中都可以是有用的。最近的方法探索了使用图形卷积网络并取得了有希望的结果。 3D形状由网格表示的事实是一个无向图形,使得图形卷积网络自然适合该问题。但是,图形卷积网络具有有限的表示功率。从图中的节点中的信息传递给连接的邻居,并且信息的传播需要连续的图形卷积。为了克服这种限制,我们提出了一种双尺度图形方法。我们使用从密集图中衍生的粗糙图来估计人类的3D姿势,以及密集图来估计3D形状。与密集图相比,粗糙图中的信息可以在更长的距离上传播。此外,有关姿势的信息可以指导恢复本地形状细节,反之亦然。我们认识到,粗糙和密集之间的连接本身是图形,并引入图形融合块以在具有不同尺度之间的图形之间交换信息。我们培训我们的模型端到端,并表明我们可以为几个评估数据集实现最先进的结果。
translated by 谷歌翻译
基于关注的编码器 - 解码器框架在现场文本识别中变得流行,主要是由于其在从视觉和语义域集成识别线索方面的优越性。然而,最近的研究表明,这两个线索可能在困难的文本中错位(例如,具有稀有文本形状)并引入诸如角色位置的约束来缓解问题。尽管有一定的成功,但无内容的位置嵌入稳定地与有意义的本地图像区域嵌入。在本文中,我们提出了一种名为多域字符距离感知(MDCDP)的新型模块,以建立视觉和语义相关位置编码。 MDCDP使用位置嵌入在注意机制后查询视觉和语义功能。它自然地编码了位置线索,其描述了字符之间的视觉和语义距离。我们开发一个名为CDISTNET的新型架构,堆叠MDCDP几次以指导精确的距离建模。因此,即使呈现的各种困难,视觉语义对准也很好地建造。我们将CDISTNET应用于两个增强的数据集和六个公共基准。实验表明,CDISTNET实现了最先进的识别准确性。虽然可视化也表明CDISTNET在视觉和语义域中实现了适当的注意本地化。我们将在验收时发布我们的代码。
translated by 谷歌翻译
图形神经网络(GNNS)在各种基于图形的应用中显示了优势。大多数现有的GNNS假设图形结构的强大奇妙并应用邻居的置换不变本地聚合以学习每个节点的表示。然而,它们未能概括到异质图,其中大多数相邻节点具有不同的标签或特征,并且相关节点远处。最近的几项研究通过组合中央节点的隐藏表示(即,基于多跳的方法)的多个跳数来解决这个问题,或者基于注意力分数对相邻节点进行排序(即,基于排名的方法)来解决这个问题。结果,这些方法具有一些明显的限制。一方面,基于多跳的方法没有明确区分相关节点的大量多跳社区,导致严重的过平滑问题。另一方面,基于排名的模型不与结束任务进行联合优化节点排名,并导致次优溶液。在这项工作中,我们呈现图表指针神经网络(GPNN)来解决上述挑战。我们利用指针网络从大量的多跳邻域选择最相关的节点,这根据与中央节点的关系来构造有序序列。然后应用1D卷积以从节点序列中提取高级功能。 GPNN中的基于指针网络的Ranker是以端到端的方式与其他部件进行联合优化的。在具有异质图的六个公共节点分类数据集上进行了广泛的实验。结果表明,GPNN显着提高了最先进方法的分类性能。此外,分析还揭示了拟议的GPNN在过滤出无关邻居并减少过平滑的特权。
translated by 谷歌翻译