视频胶囊内窥镜检查是计算机视觉和医学的热门话题。深度学习会对视频胶囊内窥镜技术的未来产生积极影响。它可以提高异常检测率,减少医生的筛查时间并有助于实际临床分析。视频胶囊内窥镜检查的CADX分类系统已显示出进一步改进的巨大希望。例如,检测癌性息肉和出血会导致快速的医疗反应并提高患者的存活率。为此,自动化的CADX系统必须具有较高的吞吐量和不错的精度。在本文中,我们提出了焦距,这是一个与轻量级卷积层集成的焦点调制网络,用于分类小肠解剖学地标和腔内发现。 FocalConvnet利用焦点调制以实现全球环境,并允许在整个正向通行证中进行全局本地空间相互作用。此外,具有固有的感应/学习偏置和提取分层特征的能力的卷积块使我们的焦点concalconvnet能够获得高吞吐量的有利结果。我们将焦点vnet与Kvasir-Capsule上的其他SOTA进行比较,Kvasir-Capsule是一个具有44,228帧的大型VCE数据集,具有13类不同的异常。我们提出的方法分别超过了其他SOTA方法论,加权F1得分,回忆和MCC}分别超过了其他SOTA方法。此外,我们报告了在实时临床环境中建立焦距的148.02图像/秒速率的最高吞吐量。建议的focalConvnet的代码可在https://github.com/noviceman-prog/focalconvnet上获得。
translated by 谷歌翻译
精确分割器官 - 危险(OARS)是优化放射治疗计划的先驱。现有的基于深度学习的多尺度融合体系结构已显示出2D医疗图像分割的巨大能力。他们成功的关键是汇总全球环境并保持高分辨率表示。但是,当转化为3D分割问题时,由于其大量的计算开销和大量数据饮食,现有的多尺度融合体系结构可能表现不佳。为了解决此问题,我们提出了一个新的OAR分割框架,称为Oarfocalfusenet,该框架融合了多尺度功能,并采用焦点调制来捕获多个尺度的全局本地上下文。每个分辨率流都具有来自不同分辨率量表的特征,并且多尺度信息汇总到模型多样化的上下文范围。结果,功能表示将进一步增强。在我们的实验设置中与OAR分割以及多器官分割的全面比较表明,我们提出的Oarfocalfusenet在公开可用的OpenKBP数据集和Synapse Multi-Organ细分方面的最新最新方法优于最新的最新方法。在标准评估指标方面,提出的两种方法(3D-MSF和Oarfocalfusenet)均表现出色。我们的最佳性能方法(Oarfocalfusenet)在OpenKBP数据集上获得的骰子系数为0.7995,Hausdorff的距离为5.1435,而Synapse Multi-Organ分段数据集则获得了0.8137的骰子系数。
translated by 谷歌翻译
We propose focal modulation networks (FocalNets in short), where self-attention (SA) is completely replaced by a focal modulation mechanism for modeling token interactions in vision. Focal modulation comprises three components: (i) hierarchical contextualization, implemented using a stack of depth-wise convolutional layers, to encode visual contexts from short to long ranges, (ii) gated aggregation to selectively gather contexts for each query token based on its content, and (iii) element-wise modulation or affine transformation to inject the aggregated context into the query. Extensive experiments show FocalNets outperform the state-of-the-art SA counterparts (e.g., Swin and Focal Transformers) with similar computational costs on the tasks of image classification, object detection, and segmentation. Specifically, FocalNets with tiny and base size achieve 82.3% and 83.9% top-1 accuracy on ImageNet-1K. After pretrained on ImageNet-22K in 224 resolution, it attains 86.5% and 87.3% top-1 accuracy when finetuned with resolution 224 and 384, respectively. When transferred to downstream tasks, FocalNets exhibit clear superiority. For object detection with Mask R-CNN, FocalNet base trained with 1\times outperforms the Swin counterpart by 2.1 points and already surpasses Swin trained with 3\times schedule (49.0 v.s. 48.5). For semantic segmentation with UPerNet, FocalNet base at single-scale outperforms Swin by 2.4, and beats Swin at multi-scale (50.5 v.s. 49.7). Using large FocalNet and Mask2former, we achieve 58.5 mIoU for ADE20K semantic segmentation, and 57.9 PQ for COCO Panoptic Segmentation. Using huge FocalNet and DINO, we achieved 64.3 and 64.4 mAP on COCO minival and test-dev, respectively, establishing new SoTA on top of much larger attention-based models like Swinv2-G and BEIT-3. Code and checkpoints are available at https://github.com/microsoft/FocalNet.
translated by 谷歌翻译
我们提出了全球环境视觉变压器(GC VIT),这是一种新的结构,可增强参数和计算利用率。我们的方法利用了与本地自我注意的联合的全球自我发项模块,以有效但有效地建模长和短距离的空间相互作用,而无需昂贵的操作,例如计算注意力面罩或移动本地窗户。此外,我们通过建议在我们的体系结构中使用修改后的融合倒置残差块来解决VIT中缺乏归纳偏差的问题。我们提出的GC VIT在图像分类,对象检测和语义分割任务中实现了最新的结果。在用于分类的ImagEnet-1k数据集上,基本,小而微小的GC VIT,$ 28 $ M,$ 51 $ M和$ 90 $ M参数实现$ \ textbf {83.2 \%} $,$ \ textbf {83.9 \%} $和$ \ textbf {84.4 \%} $ top-1的精度,超过了相当大的先前艺术,例如基于CNN的Convnext和基于VIT的Swin Transformer,其优势大大。在对象检测,实例分割和使用MS Coco和ADE20K数据集的下游任务中,预训练的GC VIT主机在对象检测,实例分割和语义分割的任务中始终如一地超过事务,有时是通过大余量。可在https://github.com/nvlabs/gcvit上获得代码。
translated by 谷歌翻译
表面缺陷检测是确保工业产品质量的极其至关重要的步骤。如今,基于编码器架构的卷积神经网络(CNN)在各种缺陷检测任务中取得了巨大的成功。然而,由于卷积的内在局部性,它们通常在明确建模长距离相互作用时表现出限制,这对于复杂情况下的像素缺陷检测至关重要,例如杂乱的背景和难以辨认的伪缺陷。最近的变压器尤其擅长学习全球图像依赖性,但对于详细的缺陷位置所需的本地结构信息有限。为了克服上述局限性,我们提出了一个有效的混合变压器体系结构,称为缺陷变压器(faft),用于表面缺陷检测,该检测将CNN和Transferaler纳入统一模型,以协作捕获本地和非本地关系。具体而言,在编码器模块中,首先采用卷积茎块来保留更详细的空间信息。然后,贴片聚合块用于生成具有四个层次结构的多尺度表示形式,每个层次结构之后分别是一系列的feft块,该块分别包括用于本地位置编码的本地位置块,一个轻巧的多功能自我自我 - 注意与良好的计算效率建模多尺度的全球上下文关系,以及用于功能转换和进一步位置信息学习的卷积馈送网络。最后,提出了一个简单但有效的解码器模块,以从编码器中的跳过连接中逐渐恢复空间细节。与其他基于CNN的网络相比,三个数据集上的广泛实验证明了我们方法的优势和效率。
translated by 谷歌翻译
视觉变压器(VIT)用作强大的视觉模型。与卷积神经网络不同,在前几年主导视觉研究,视觉变压器享有捕获数据中的远程依赖性的能力。尽管如此,任何变压器架构的组成部分,自我关注机制都存在高延迟和低效的内存利用,使其不太适合高分辨率输入图像。为了缓解这些缺点,分层视觉模型在非交错的窗口上局部使用自我关注。这种放松会降低输入尺寸的复杂性;但是,它限制了横窗相互作用,损害了模型性能。在本文中,我们提出了一种新的班次不变的本地注意层,称为查询和参加(QNA),其以重叠的方式聚集在本地输入,非常类似于卷积。 QNA背后的关键想法是介绍学习的查询,这允许快速高效地实现。我们通过将其纳入分层视觉变压器模型来验证我们的层的有效性。我们展示了速度和内存复杂性的改进,同时实现了与最先进的模型的可比准确性。最后,我们的图层尺寸尤其良好,窗口大小,需要高于X10的内存,而不是比现有方法更快。
translated by 谷歌翻译
在卷积神经网络(CNN)的动力下,医学图像分类迅速发展。由于卷积内核的接受场的固定尺寸,很难捕获医学图像的全局特征。尽管基于自发的变压器可以对远程依赖性进行建模,但它具有很高的计算复杂性,并且缺乏局部电感偏见。许多研究表明,全球和本地特征对于图像分类至关重要。但是,医学图像具有许多嘈杂,分散的特征,类内的变化和类间的相似性。本文提出了三个分支分层的多尺度特征融合网络结构,称为医学图像分类为新方法。它可以融合多尺度层次结构的变压器和CNN的优势,而不会破坏各自的建模,从而提高各种医学图像的分类精度。局部和全局特征块的平行层次结构旨在有效地提取各种语义尺度的本地特征和全局表示,并灵活地在不同的尺度上建模,并与图像大小相关的线性计算复杂性。此外,自适应分层特征融合块(HFF块)旨在全面利用在不同层次级别获得的功能。 HFF块包含空间注意力,通道注意力,残留的倒置MLP和快捷方式,以在每个分支的各个规模特征之间适应融合语义信息。我们在ISIC2018数据集上提出的模型的准确性比基线高7.6%,COVID-19数据集的准确性为21.5%,Kvasir数据集的准确性为10.4%。与其他高级模型相比,HIFUSE模型表现最好。我们的代码是开源的,可从https://github.com/huoxiangzuo/hifuse获得。
translated by 谷歌翻译
为了实现不断增长的准确性,通常会开发大型和复杂的神经网络。这样的模型需要高度的计算资源,因此不能在边缘设备上部署。由于它们在几个应用领域的有用性,建立资源有效的通用网络非常感兴趣。在这项工作中,我们努力有效地结合了CNN和变压器模型的优势,并提出了一种新的有效混合体系结构。特别是在EDGENEXT中,我们引入了分裂深度转置注意力(SDTA)编码器,该编码器将输入张量分解为多个通道组,并利用深度旋转以及跨通道维度的自我注意力,以隐含地增加接受场并编码多尺度特征。我们在分类,检测和分割任务上进行的广泛实验揭示了所提出的方法的优点,优于相对较低的计算要求的最先进方法。我们具有130万参数的EDGENEXT模型在Imagenet-1k上达到71.2 \%TOP-1的精度,超过移动设备的绝对增益为2.2 \%,而拖鞋减少了28 \%。此外,我们具有560万参数的EDGENEXT模型在Imagenet-1k上达到了79.4 \%TOP-1的精度。代码和模型可在https://t.ly/_vu9上公开获得。
translated by 谷歌翻译
视觉变压器由于能够捕获图像中的长期依赖性的能力而成功地应用于图像识别任务。但是,变压器与现有卷积神经网络(CNN)之间的性能和计算成本仍然存在差距。在本文中,我们旨在解决此问题,并开发一个网络,该网络不仅可以超越规范变压器,而且可以超越高性能卷积模型。我们通过利用变压器来捕获长期依赖性和CNN来建模本地特征,从而提出了一个新的基于变压器的混合网络。此外,我们将其扩展为获得一个称为CMT的模型家族,比以前的基于卷积和基于变压器的模型获得了更好的准确性和效率。特别是,我们的CMT-S在ImageNet上获得了83.5%的TOP-1精度,而在拖鞋上的拖曳率分别比现有的DEIT和EficitiveNet小14倍和2倍。拟议的CMT-S还可以很好地概括CIFAR10(99.2%),CIFAR100(91.7%),花(98.7%)以及其他具有挑战性的视觉数据集,例如可可(44.3%地图),计算成本较小。
translated by 谷歌翻译
卷积神经网络(CNN)已成为医疗图像分割任务的共识。但是,由于卷积操作的性质,它们在建模长期依赖性和空间相关性时受到限制。尽管最初开发了变压器来解决这个问题,但它们未能捕获低级功能。相比之下,证明本地和全球特征对于密集的预测至关重要,例如在具有挑战性的环境中细分。在本文中,我们提出了一种新型方法,该方法有效地桥接了CNN和用于医学图像分割的变压器。具体而言,我们使用开创性SWIN变压器模块和一个基于CNN的编码器设计两个多尺度特征表示。为了确保从上述两个表示获得的全局和局部特征的精细融合,我们建议在编码器编码器结构的跳过连接中提出一个双层融合(DLF)模块。在各种医学图像分割数据集上进行的广泛实验证明了Hiformer在计算复杂性以及定量和定性结果方面对其他基于CNN的,基于变压器和混合方法的有效性。我们的代码可在以下网址公开获取:https://github.com/amirhossein-kz/hiformer
translated by 谷歌翻译
Recently, many attempts have been made to construct a transformer base U-shaped architecture, and new methods have been proposed that outperformed CNN-based rivals. However, serious problems such as blockiness and cropped edges in predicted masks remain because of transformers' patch partitioning operations. In this work, we propose a new U-shaped architecture for medical image segmentation with the help of the newly introduced focal modulation mechanism. The proposed architecture has asymmetric depths for the encoder and decoder. Due to the ability of the focal module to aggregate local and global features, our model could simultaneously benefit the wide receptive field of transformers and local viewing of CNNs. This helps the proposed method balance the local and global feature usage to outperform one of the most powerful transformer-based U-shaped models called Swin-UNet. We achieved a 1.68% higher DICE score and a 0.89 better HD metric on the Synapse dataset. Also, with extremely limited data, we had a 4.25% higher DICE score on the NeoPolyp dataset. Our implementations are available at: https://github.com/givkashi/Focal-UNet
translated by 谷歌翻译
卷积神经网络(CNN)的深度学习体系结构在计算机视野领域取得了杰出的成功。 CNN构建的编码器架构U-Net在生物医学图像分割方面取得了重大突破,并且已在各种实用的情况下应用。但是,编码器部分中每个下采样层和简单堆积的卷积的平等设计不允许U-NET从不同深度提取足够的特征信息。医学图像的复杂性日益增加为现有方法带来了新的挑战。在本文中,我们提出了一个更深层,更紧凑的分裂注意U形网络(DCSAU-NET),该网络有效地利用了基于两个新颖框架的低级和高级语义信息:主要功能保护和紧凑的分裂注意力堵塞。我们评估了CVC-ClinicDB,2018 Data Science Bowl,ISIC-2018和SEGPC-2021数据集的建议模型。结果,DCSAU-NET在联合(MIOU)和F1-SOCRE的平均交点方面显示出比其他最先进的方法(SOTA)方法更好的性能。更重要的是,提出的模型在具有挑战性的图像上表现出了出色的细分性能。我们的工作代码以及更多技术细节,请访问https://github.com/xq141839/dcsau-net。
translated by 谷歌翻译
多年来,卷积神经网络(CNN)已成为多种计算机视觉任务的事实上的标准。尤其是,基于开创性体系结构(例如具有跳过连接的U形模型)或具有金字塔池的Artous卷积的深度神经网络已针对广泛的医学图像分析任务量身定制。此类架构的主要优点是它们容易拘留多功能本地功能。然而,作为一般共识,CNN无法捕获由于卷积操作的固有性能的内在特性而捕获长期依赖性和空间相关性。另外,从全球信息建模中获利的变压器源于自我发项机制,最近在自然语言处理和计算机视觉方面取得了出色的表现。然而,以前的研究证明,局部和全局特征对于密集预测的深层模型至关重要,例如以不同的形状和配置对复杂的结构进行分割。为此,本文提出了TransDeeplab,这是一种新型的DeepLab样纯变压器,用于医学图像分割。具体而言,我们用移动的窗口利用层次旋转式变形器来扩展DeepLabV3并建模非常有用的空间金字塔池(ASPP)模块。对相关文献的彻底搜索结果是,我们是第一个用基于纯变压器模型对开创性DeepLab模型进行建模的人。关于各种医学图像分割任务的广泛实验证明,我们的方法在视觉变压器和基于CNN的方法的合并中表现出色或与大多数当代作品相提并论,并显着降低了模型复杂性。代码和训练有素的模型可在https://github.com/rezazad68/transdeeplab上公开获得
translated by 谷歌翻译
Semiconductor manufacturing is on the cusp of a revolution: the Internet of Things (IoT). With IoT we can connect all the equipment and feed information back to the factory so that quality issues can be detected. In this situation, more and more edge devices are used in wafer inspection equipment. This edge device must have the ability to quickly detect defects. Therefore, how to develop a high-efficiency architecture for automatic defect classification to be suitable for edge devices is the primary task. In this paper, we present a novel architecture that can perform defect classification in a more efficient way. The first function is self-proliferation, using a series of linear transformations to generate more feature maps at a cheaper cost. The second function is self-attention, capturing the long-range dependencies of feature map by the channel-wise and spatial-wise attention mechanism. We named this method as self-proliferation-and-attention neural network. This method has been successfully applied to various defect pattern classification tasks. Compared with other latest methods, SP&A-Net has higher accuracy and lower computation cost in many defect inspection tasks.
translated by 谷歌翻译
视觉变压器在计算机视觉任务中表现出色。但是,其(本地)自我注意机制的计算成本很昂贵。相比之下,CNN具有内置的电感偏置效率更高。最近的作品表明,CNN有望通过学习建筑设计和培训协议来与视觉变形金刚竞争。然而,现有方法要么忽略多层次特征,要么缺乏动态繁荣,从而导致次优性能。在本文中,我们提出了一种名为MCA的新型注意力机制,该机制通过多个内核大小捕获了输入图像的不同模式,并启用具有门控机制的输入自适应权重。根据MCA,我们提出了一个名为Convformer的神经网络。争辩者采用了视觉变压器的一般体系结构,同时用我们提出的MCA代替了(本地)自我注意的机制。广泛的实验结果表明,在各种任务中,应变器优于相似的大小视觉变压器(VIT)和卷积神经网络(CNN)。例如,在ImageNet数据集上,交货式S,Convformer-l实现82.8%的最新性能,top-1的精度为83.6%。此外,在ADE20K上,Convformer-S优于1.5 miOU的Swin-T,在Coco上具有较小型号的Coco上的0.9边界盒AP。代码和型号将可用。
translated by 谷歌翻译
视觉变压器的最新进展在基于点产生自我注意的新空间建模机制驱动的各种任务中取得了巨大成功。在本文中,我们表明,视觉变压器背后的关键要素,即输入自适应,远程和高阶空间相互作用,也可以通过基于卷积的框架有效地实现。我们介绍了递归封闭式卷积($ \ textit {g}^\ textit {n} $ conv),该卷积{n} $ conv)与封闭的卷积和递归设计执行高阶空间交互。新操作是高度灵活和可定制的,它与卷积的各种变体兼容,并将自我注意的两阶相互作用扩展到任意订单,而无需引入大量额外的计算。 $ \ textit {g}^\ textit {n} $ conv可以用作插件模块,以改善各种视觉变压器和基于卷积的模型。根据该操作,我们构建了一个名为Hornet的新型通用视觉骨干家族。关于ImageNet分类,可可对象检测和ADE20K语义分割的广泛实验表明,大黄蜂的表现优于Swin变形金刚,并具有相似的整体体系结构和训练配置的明显边距。大黄蜂还显示出对更多训练数据和更大模型大小的有利可伸缩性。除了在视觉编码器中的有效性外,我们还可以将$ \ textit {g}^\ textit {n} $ conv应用于特定于任务的解码器,并始终通过较少的计算来提高密集的预测性能。我们的结果表明,$ \ textIt {g}^\ textit {n} $ conv可以成为视觉建模的新基本模块,可有效结合视觉变形金刚和CNN的优点。代码可从https://github.com/raoyongming/hornet获得
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译
在过去的十年中,基于深度学习的算法在遥感图像分析的不同领域中广泛流行。最近,最初在自然语言处理中引入的基于变形金刚的体系结构遍布计算机视觉领域,在该字段中,自我发挥的机制已被用作替代流行的卷积操作员来捕获长期依赖性。受到计算机视觉的最新进展的启发,遥感社区还见证了对各种任务的视觉变压器的探索。尽管许多调查都集中在计算机视觉中的变压器上,但据我们所知,我们是第一个对基于遥感中变压器的最新进展进行系统评价的人。我们的调查涵盖了60多种基于变形金刚的60多种方法,用于遥感子方面的不同遥感问题:非常高分辨率(VHR),高光谱(HSI)和合成孔径雷达(SAR)图像。我们通过讨论遥感中变压器的不同挑战和开放问题来结束调查。此外,我们打算在遥感论文中频繁更新和维护最新的变压器,及其各自的代码:https://github.com/virobo-15/transformer-in-in-remote-sensing
translated by 谷歌翻译
变形金刚最近在计算机视觉社区中引起了极大的关注。然而,缺乏关于图像大小的自我注意力机制的可扩展性限制了它们在最先进的视觉骨架中的广泛采用。在本文中,我们介绍了一种高效且可扩展的注意模型,我们称之为多轴注意,该模型由两个方面组成:阻止局部和扩张的全球关注。这些设计选择允许仅具有线性复杂性的任意输入分辨率上进行全局本地空间相互作用。我们还通过有效地将我们提出的注意模型与卷积混合在一起,提出了一个新的建筑元素,因此,通过简单地在多个阶段重复基本的构建块,提出了一个简单的层次视觉主链,称为Maxvit。值得注意的是,即使在早期的高分辨率阶段,Maxvit也能够在整个网络中“看到”。我们证明了模型在广泛的视觉任务上的有效性。根据图像分类,Maxvit在各种设置下实现最先进的性能:没有额外的数据,Maxvit获得了86.5%的Imagenet-1K Top-1精度;使用Imagenet-21K预训练,我们的模型可实现88.7%的TOP-1精度。对于下游任务,麦克斯维特(Maxvit)作为骨架可在对象检测以及视觉美学评估方面提供有利的性能。我们还表明,我们提出的模型表达了ImageNet上强大的生成建模能力,这表明了Maxvit块作为通用视觉模块的优势潜力。源代码和训练有素的模型将在https://github.com/google-research/maxvit上找到。
translated by 谷歌翻译
卷积神经网络(CNN)是用于计算机视觉的主要的深神经网络(DNN)架构。最近,变压器和多层的Perceptron(MLP)的基础型号,如视觉变压器和MLP-MILER,开始引领新的趋势,因为它们在想象成分类任务中显示出了有希望的结果。在本文中,我们对这些DNN结构进行了实证研究,并试图了解他们各自的利弊。为了确保公平的比较,我们首先开发一个名为SPACH的统一框架,可以采用单独的空间和通道处理模块。我们在SPACH框架下的实验表明,所有结构都可以以适度的规模实现竞争性能。但是,当网络大小缩放时,它们展示了独特的行为。根据我们的调查结果,我们建议使用卷积和变压器模块的混合模型。由此产生的Hybrid-MS-S +模型实现了83.9%的前1个精度,63米参数和12.3g拖薄。它已与具有复杂设计的SOTA模型相提并论。代码和模型在https://github.com/microsoft/spach上公开使用。
translated by 谷歌翻译