当用于自动驾驶时,目标识别可以更准确地预测其他车辆的未来行为。砂砾的最新目标识别方法已被证明是快速,准确,可解释和可验证的。在自动驾驶中,车辆可能会遇到训练期间看不见的新型场景,并且由于阻塞而部分可观察到环境。但是,砂砾只能在固定框架方案中运行,具有完整的可观察性。我们提出了一种新颖的目标识别方法,名为目标识别,并在封闭(OGRIT)下使用可解释的树,该方法解决了这些砂砾的这些缺点。我们证明,由于阻塞,Ogrit可以在不同的方案和处理丢失的数据之间进行概括,同时仍然快速,准确,可解释和可验证。
translated by 谷歌翻译
自治车辆必须推理城市环境中的空间闭塞,以确保安全性而不会过于谨慎。前工作探索了观察到的道路代理人的社会行为的闭塞推动,因此将人们视为传感器。从代理行为推断出占用是一种固有的多模式问题;驾驶员可以同样地表现出与它们之前的不同占用模式类似(例如,驾驶员可以以恒定速度或在开放的道路上移动)。然而,过去的工作不考虑这种多层性,从而忽略了在驾驶员行为及其环境之间的关系中模拟了这种梯级不确定性的来源。我们提出了一种遮挡推理方法,其特征是观察人员的行为作为传感器测量,并将它们与标准传感器套件的熔断器融合。为了捕获炼泥的不确定性,我们用离散的潜在空间训练一个条件变形AutoEncoder,以学习从观察到的驾驶员轨迹到驾驶员前方视图的占用网格表示的多模式映射。我们的方法处理多代理场景,使用证据理论将来自多个观察到的驱动因素的测量结果组合以解决传感器融合问题。我们的方法在真实的数据集中验证,表现出基线,并展示实时能力的性能。我们的代码可在https://github.com/sisl/multiagentvarizingalocclusionInferience获得。
translated by 谷歌翻译
难以理解的AI系统很难信任,尤其是当它们在自动驾驶(例如自动驾驶)等安全环境中运行时。因此,有必要建立透明且可查询的系统以提高信任水平。我们提出了一种基于现有的称为IGP2的现有白盒系统的自动驾驶汽车运动计划和预测的透明,以人为中心的解释生成方法。我们的方法将贝叶斯网络与无上下文生成规则相结合,并可以为自动驾驶汽车的高级驾驶行为提供因果自然语言解释。对模拟方案的初步测试表明,我们的方法捕获了自动驾驶汽车行动背后的原因,并产生了具有不同复杂性的可理解解释。
translated by 谷歌翻译
Traditional planning and control methods could fail to find a feasible trajectory for an autonomous vehicle to execute amongst dense traffic on roads. This is because the obstacle-free volume in spacetime is very small in these scenarios for the vehicle to drive through. However, that does not mean the task is infeasible since human drivers are known to be able to drive amongst dense traffic by leveraging the cooperativeness of other drivers to open a gap. The traditional methods fail to take into account the fact that the actions taken by an agent affect the behaviour of other vehicles on the road. In this work, we rely on the ability of deep reinforcement learning to implicitly model such interactions and learn a continuous control policy over the action space of an autonomous vehicle. The application we consider requires our agent to negotiate and open a gap in the road in order to successfully merge or change lanes. Our policy learns to repeatedly probe into the target road lane while trying to find a safe spot to move in to. We compare against two model-predictive control-based algorithms and show that our policy outperforms them in simulation.
translated by 谷歌翻译
这项工作研究了以下假设:与人类驾驶状态的部分可观察到的马尔可夫决策过程(POMDP)计划可以显着提高自动高速公路驾驶的安全性和效率。我们在模拟场景中评估了这一假设,即自动驾驶汽车必须在快速连续中安全执行三个车道变化。通过观测扩大(POMCPOW)算法,通过部分可观察到的蒙特卡洛计划获得了近似POMDP溶液。这种方法的表现优于过度自信和保守的MDP基准,匹配或匹配效果优于QMDP。相对于MDP基准,POMCPOW通常将不安全情况的速率降低了一半或将成功率提高50%。
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
在交通场景中的道路使用者的运动预测对于必须在复杂的动态环境中采取安全和强大决策的自动驾驶系统至关重要。我们提出了一种新型的运动预测系统,用于自动驾驶。我们的系统基于贝叶斯逆计划框架,该框架有效地精心策划了基于地图的目标提取,基于经典的基于控制的轨迹发生器以及专家集合轻巧神经网络的混合物,专门针对运动概况预测。与许多替代方法相反,这种模块化有助于隔离性能因素并更好地解释结果,而不会损害性能。该系统解决了感兴趣的多个方面,即多模式,运动概况不确定性和轨迹物理可行性。我们报告了流行的高速公路数据集NGSIM的几个实验,这在轨迹误差方面证明了最先进的性能。我们还对系统组件进行了详细的分析,以及基于行为(例如变更车道与跟随车道)对数据进行分层的实验,以提供对该域中挑战的见解。最后,我们提出了定性分析,以显示我们方法的其他好处,例如解释产出的能力。
translated by 谷歌翻译
自治车辆的评估和改善规划需要可扩展的长尾交通方案。有用的是,这些情景必须是现实的和挑战性的,但不能安全地开车。在这项工作中,我们介绍努力,一种自动生成具有挑战性的场景的方法,导致给定的计划者产生不良行为,如冲突。为了维护情景合理性,关键的想法是利用基于图形的条件VAE的形式利用学习的交通运动模型。方案生成在该流量模型的潜在空间中制定了优化,通过扰乱初始的真实世界的场景来产生与给定计划者碰撞的轨迹。随后的优化用于找到“解决方案”的场景,确保改进给定的计划者是有用的。进一步的分析基于碰撞类型的群集生成的场景。我们攻击两名策划者并展示争取在这两种情况下成功地产生了现实,具有挑战性的情景。我们另外“关闭循环”并使用这些方案优化基于规则的策划器的超参数。
translated by 谷歌翻译
自主驾驶中安全路径规划是由于静态场景元素和不确定的周围代理的相互作用,这是一个复杂的任务。虽然所有静态场景元素都是信息来源,但对自助车辆可用的信息有不对称的重要性。我们展示了一个具有新颖功能的数据集,签署了Parience,定义为指示符号是否明显地对自助式车辆的目标有关交通规则的目标。在裁剪标志上使用卷积网络,通过道路类型,图像坐标和计划机动的实验增强,我们预测了76%的准确性,使用76%的符号蓬勃发展,并使用与标志图像的车辆机动信息找到最佳改进。
translated by 谷歌翻译
研究表明,自治车辆(AVS)在由人类驱动因素组成的交通环境中保守,不适应当地条件和社会文化规范。众所周知,如果存在理解人类驱动程序的行为,则可以设计社会意识的AVS。我们提出了一种利用机器学习来预测人类驱动程序的行为的方法。这类似于人类如何隐含地解释道路上司机的行为,只能观察其车辆的轨迹。我们使用图形理论工具从轨迹和机器学习中提取驾驶员行为特征,以在流量和驾驶员行为中获得车辆的提取轨迹之间的计算映射。与此域中的现有方法相比,我们证明我们的方法是强大的,一般的,并且可扩展到广泛的应用程序,如自主导航。我们评估我们在美国,印度,中国和新加坡捕获的现实世界交通数据集以及模拟中的方法。
translated by 谷歌翻译
实现安全和强大的自主权是通往更广泛采用自动驾驶汽车技术的道路的关键瓶颈。这激发了超越外在指标,例如脱离接触之间的里程,并呼吁通过设计体现安全的方法。在本文中,我们解决了这一挑战的某些方面,重点是运动计划和预测问题。我们通过描述在自动驾驶堆栈中解决选定的子问题所采取的新方法的描述,在介绍五个之内采用的设计理念的过程中。这包括安全的设计计划,可解释以及可验证的预测以及对感知错误的建模,以在现实自主系统的测试管道中实现有效的SIM到现实和真实的SIM转移。
translated by 谷歌翻译
Autonomous vehicles currently suffer from a time-inefficient driving style caused by uncertainty about human behavior in traffic interactions. Accurate and reliable prediction models enabling more efficient trajectory planning could make autonomous vehicles more assertive in such interactions. However, the evaluation of such models is commonly oversimplistic, ignoring the asymmetric importance of prediction errors and the heterogeneity of the datasets used for testing. We examine the potential of recasting interactions between vehicles as gap acceptance scenarios and evaluating models in this structured environment. To that end, we develop a framework facilitating the evaluation of any model, by any metric, and in any scenario. We then apply this framework to state-of-the-art prediction models, which all show themselves to be unreliable in the most safety-critical situations.
translated by 谷歌翻译
Motion prediction systems aim to capture the future behavior of traffic scenarios enabling autonomous vehicles to perform safe and efficient planning. The evolution of these scenarios is highly uncertain and depends on the interactions of agents with static and dynamic objects in the scene. GNN-based approaches have recently gained attention as they are well suited to naturally model these interactions. However, one of the main challenges that remains unexplored is how to address the complexity and opacity of these models in order to deal with the transparency requirements for autonomous driving systems, which includes aspects such as interpretability and explainability. In this work, we aim to improve the explainability of motion prediction systems by using different approaches. First, we propose a new Explainable Heterogeneous Graph-based Policy (XHGP) model based on an heterograph representation of the traffic scene and lane-graph traversals, which learns interaction behaviors using object-level and type-level attention. This learned attention provides information about the most important agents and interactions in the scene. Second, we explore this same idea with the explanations provided by GNNExplainer. Third, we apply counterfactual reasoning to provide explanations of selected individual scenarios by exploring the sensitivity of the trained model to changes made to the input data, i.e., masking some elements of the scene, modifying trajectories, and adding or removing dynamic agents. The explainability analysis provided in this paper is a first step towards more transparent and reliable motion prediction systems, important from the perspective of the user, developers and regulatory agencies. The code to reproduce this work is publicly available at https://github.com/sancarlim/Explainable-MP/tree/v1.1.
translated by 谷歌翻译
由于静态优先规则和遮挡限制了对优先流量的观点,城市交叉口容易延迟和效率低下。改善交通流量的现有方法(广泛称为自动交叉管理系统)主要基于非学习预订方案或优化算法。基于机器学习的技术在计划单个自我车辆方面显示出令人鼓舞的结果。这项工作建议通过共同计划多辆车来利用机器学习算法来优化城市交叉点的交通流量。基于学习的行为计划提出了几个挑战,要求适合的输入和输出表示以及大量的基础数据。我们通过使用基于图形的柔性输入表示并伴随图神经网络来解决以前的问题。这允许有效地编码场景,并固有地为所有相关车辆提供单独的输出。为了学习明智的政策,而不依赖于专家示范的模仿,合作计划任务被视为强化学习问题。我们在开源模拟环境中训练并评估提出的方法,以进行自动驾驶的决策。与静态优先规则管理的第一届第一局和流量相比,学识渊博的计划者表现出显着的流速增长,同时减少了诱导停止的数量。除合成模拟外,还基于从公开可用的IND数据集中获取的现实世界流量数据进行评估。
translated by 谷歌翻译
安全与其他交通参与者的互动是自动驾驶的核心要求之一,尤其是在交叉点和遮挡中。大多数现有的方法都是为特定场景设计的,需要大量的人工劳动参数调整,以应用于不同情况。为了解决这个问题,我们首先提出了一个基于学习的交互点模型(IPM),该模型描述了代理与保护时间和交互优先级之间的相互作用以统一的方式。我们将提出的IPM进一步整合到一个新颖的计划框架中,通过在高度动态的环境中的全面模拟来证明其有效性和鲁棒性。
translated by 谷歌翻译
这项工作提出了一种新的方法,可以使用有效的鸟类视图表示和卷积神经网络在高速公路场景中预测车辆轨迹。使用基本的视觉表示,很容易将车辆位置,运动历史,道路配置和车辆相互作用轻松包含在预测模型中。 U-NET模型已被选为预测内核,以使用图像到图像回归方法生成场景的未来视觉表示。已经实施了一种方法来从生成的图形表示中提取车辆位置以实现子像素分辨率。该方法已通过预防数据集(一个板载传感器数据集)进行了培训和评估。已经评估了不同的网络配置和场景表示。这项研究发现,使用线性终端层和车辆的高斯表示,具有6个深度水平的U-NET是最佳性能配置。发现使用车道标记不会改善预测性能。平均预测误差为0.47和0.38米,对于纵向和横向坐标的最终预测误差分别为0.76和0.53米,预测轨迹长度为2.0秒。与基线方法相比,预测误差低至50%。
translated by 谷歌翻译
行人在场的运动控制算法对于开发安全可靠的自动驾驶汽车(AV)至关重要。传统运动控制算法依赖于手动设计的决策政策,这些政策忽略了AV和行人之间的相互作用。另一方面,深度强化学习的最新进展允许在没有手动设计的情况下自动学习政策。为了解决行人在场的决策问题,作者介绍了一个基于社会价值取向和深入强化学习(DRL)的框架,该框架能够以不同的驾驶方式生成决策政策。该政策是在模拟环境中使用最先进的DRL算法培训的。还引入了适合DRL训练的新型计算效率的行人模型。我们执行实验以验证我们的框架,并对使用两种不同的无模型深钢筋学习算法获得的策略进行了比较分析。模拟结果表明,开发的模型如何表现出自然的驾驶行为,例如短暂的驾驶行为,以促进行人的穿越。
translated by 谷歌翻译
基于神经网络的驾驶规划师在改善自动驾驶的任务绩效方面表现出了巨大的承诺。但是,确保具有基于神经网络的组件的系统的安全性,尤其是在密集且高度交互式的交通环境中,这是至关重要的,但又具有挑战性。在这项工作中,我们为基于神经网络的车道更改提出了一个安全驱动的互动计划框架。为了防止过度保守计划,我们确定周围车辆的驾驶行为并评估其侵略性,然后以互动方式相应地适应了计划的轨迹。如果在预测的最坏情况下,即使存在安全的逃避轨迹,则自我车辆可以继续改变车道;否则,它可以停留在当前的横向位置附近或返回原始车道。我们通过广泛而全面的实验环境以及在自动驾驶汽车公司收集的现实情况下进行了广泛的模拟,定量证明了计划者设计的有效性及其优于基线方法的优势。
translated by 谷歌翻译
我们通过策略提取(MSVIPER)提出了多种可验证的增强学习,这是一种策略蒸馏到决策树以改进机器人导航的新方法。 MSVIPER使用任何强化学习(RL)技术来学习一项“专家”政策,涉及学习国家行动映射,然后使用模仿学习来从中学习决策树策略。我们证明,MSVIPER会导致有效的决策树,并可以准确模仿专家政策的行为。此外,我们提出了有效的政策蒸馏和树修改技术,这些技术利用决策树结构,可以改进政策而无需再培训。我们使用我们的方法来改善用于室内和室外场景的基于RL的机器人导航算法的性能。我们证明了在减少冻结和振荡行为(减少95 \%降低)方面的好处。
translated by 谷歌翻译
强化学习(RL)已证明可以在各种任务中达到超级人类水平的表现。但是,与受监督的机器学习不同,将其推广到各种情况的学习策略仍然是现实世界中最具挑战性的问题之一。自主驾驶(AD)提供了一个多方面的实验领域,因为有必要在许多变化的道路布局和可能的交通情况大量分布中学习正确的行为,包括个人驾驶员个性和难以预测的交通事件。在本文中,我们根据可配置,灵活和性能的代码库为AD提出了一个具有挑战性的基准。我们的基准测试使用了随机场景生成器的目录,包括用于道路布局和交通变化的多种机制,不同的数值和视觉观察类型,不同的动作空间,不同的车辆模型,并允许在静态场景定义下使用。除了纯粹的算法见解外,我们面向应用程序的基准还可以更好地理解设计决策的影响,例如行动和观察空间对政策的普遍性。我们的基准旨在鼓励研究人员提出能够在各种情况下成功概括的解决方案,这是当前RL方法失败的任务。基准的代码可在https://github.com/seawee1/driver-dojo上获得。
translated by 谷歌翻译